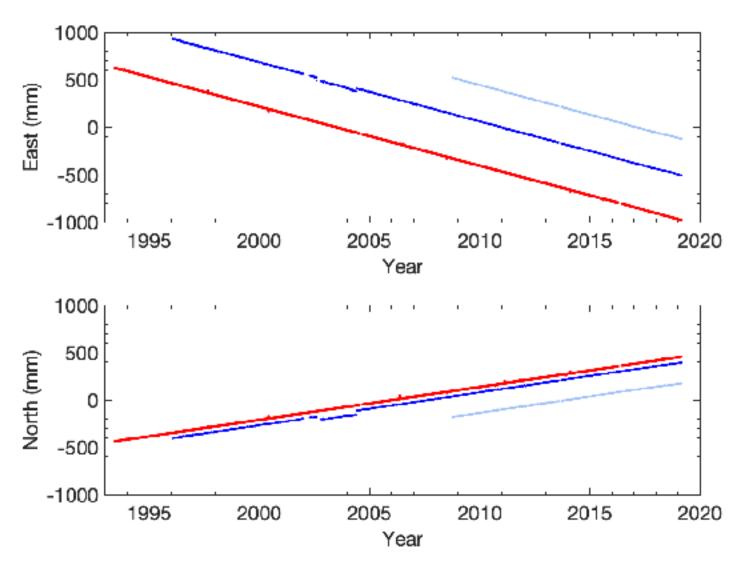
KOKEE12M-KOKEE20M VLBI Tie and Mixed-mode Processing



A. Niell for the MIT Haystack VGOS group

Improving the ITRF

- VGOS network is expected to be more accurate than current legacy SX network
- Incorporation of the VGOS antennas in the existing reference frame is crucial
 - Benefit from long history of legacy observations
 - Improve the TRF accuracy and enable continuity.

KPGO GPS and VLBI histories

Strategies for linking VGOS and legacy

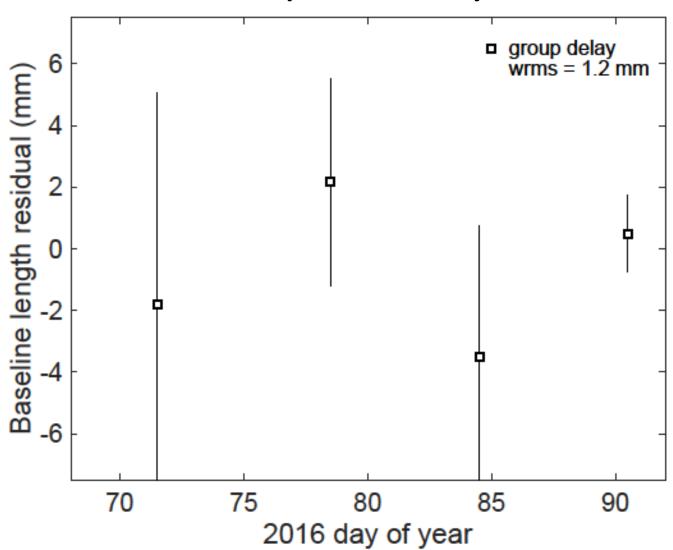
- Include in a legacy session those VGOS antennas that are capable of S-band reception
 - Obtain the positions of the VGOS antennas directly in the legacy frame
 - Improve the legacy networks by including more sites for each session
- Tie VGOS and legacy antennas at the same site with VLBI
 - Provides much more accurate position of the VGOS antenna in fewer sessions

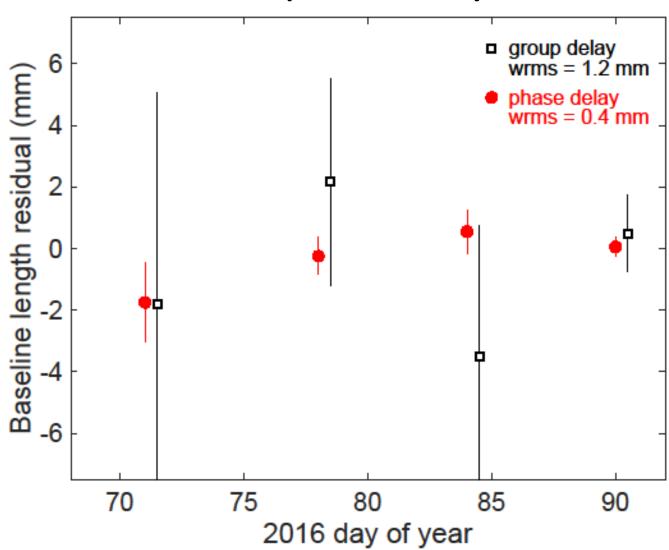
Kokee Ties observations

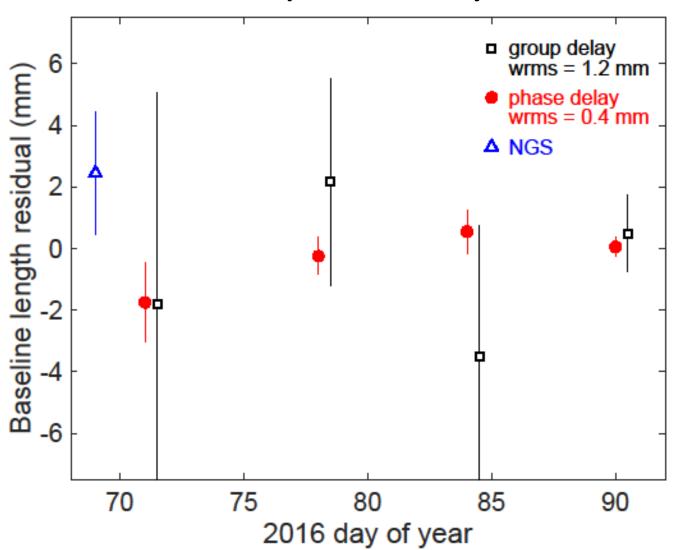
- Kokee12m-Kokee20m
 - Four sessions in 2016 March (45 min to 22.5 hours)
 - 12m and 20m as scheduled antennas
 - Westford and/or GGAO tagged along
 - Phase cal turned off at 20m
 - Cable delay applied for both antennas
 - Required mixed-mode correlation and processing (same as will be used for R1/R4)

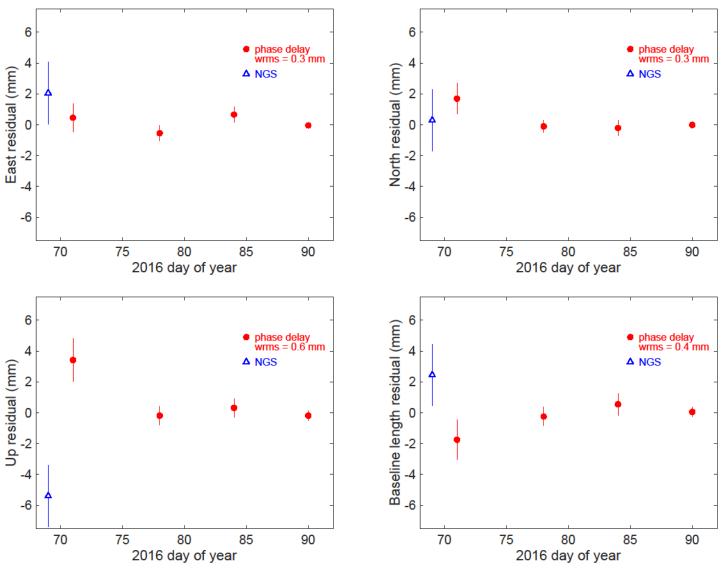
Kokee Ties analysis

- Geodetic solution with *nuSolve 0.6.4*
 - X-band only
 - 20m as reference station
 - Estimate the 12m position
 - Estimate the 12m clock as 30 min PWL segments
 - No atmosphere parameters estimated (L = 31m)
 - Both group and phase delay solutions obtained
- Compare to optical survey made by NGS


Group vs phase delay


Observing frequency: $v \approx 8 \text{ GHz}$

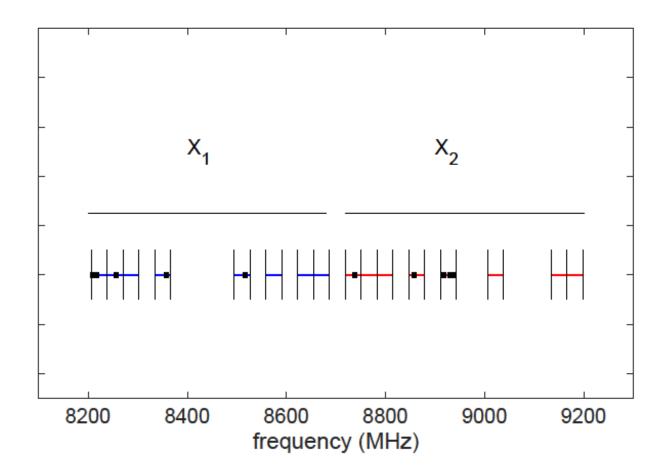

RMS bandwidth: $\Delta v \approx 0.25 \text{ GHz}$


Group delay error per scan $\propto 1/\Delta v$ Phase delay error per scan $\propto 1/v$

So $\sigma(\text{phase}) \approx \sigma(\text{group})/30$ before additive noise is included, then $\sigma(\text{phase}) \approx \sigma(\text{group})/3$

Future Kokee Ties Observations

- Local 12m-20m VLBI sessions
 - Receiver-box change is planned for the 20m that will allow broadband installation
 - Do additional VLBI tie sessions before and after box change
- Global S/X sessions
 - Verify and refine observing and correlation procedures
 - Include VGOS antennas in S/X sessions


Next actions

- Refine the analysis of the initial Kokee Ties sessions
- Complete the processing of RD1810
 - included GGAO12M, KOKEE12M, and WESTFORD as VGOS antennas
 - plus 6 legacy antennas
- Verify the processing procedures for mixedmode sessions
- Schedule the next four Kokee Tie sessions

Mixed-mode observing

- Same-session observations with both S/X and broadband (VGOS) systems
- Frequencies
 - Global sessions
 - All antennas observe S/X
 - VGOS antennas may include another band
 - e.g. $S/C/X_1/X_2$
 - Local tie sessions
 - Utilize X-band only

Frequencies for mixed-mode: X-band

Summary

- Incorporation of the VGOS antennas in the existing reference frame is crucial for improving the TRF accuracy and for enabling continuity
- Have measured the vector between the colocated KPGO VGOS and legacy antennas with a repeatability of <1mm in all components
- Procedures for mixed-mode observing and correlation are being developed and documented

Thank you.

A. Niell, M.Titus, J. Barrett, R. Cappallo, P. Elosegui, D. Mondal, G. Rajagopalan, C. Ruszczyk, S. Bolotin

Kokee12m and Kokee20m

Global session considerations

- The number of scans per hour will be limited by slow speed of the legacy antennas so global sessions will not achieve the temporal density of a VGOS-only session.
- Sensitivity at X-band may not be a problem for VGOS antennas, but may be at S-band due to RFI.
- Some VGOS stations will not be usable for global ties due to having a 3-GHz lower frequency cutoff.

Local ties considerations

- Proximity of the antennas potentially allows excellent full-sky coverage, but one antenna may shadow the other
- Proximity of the antennas means ionosphere difference may be negligible; if so, use X-band only
- Phasecal signals must be made non-interfering*
 - Turn phasecal off for one antenna or
 - Offset the reference frequency for one antenna
- Local RFI is common to all antennas at the site*

^{*} Use frequency notching in fourfit?

KT-sessions: 30-minute clock; posn of K2

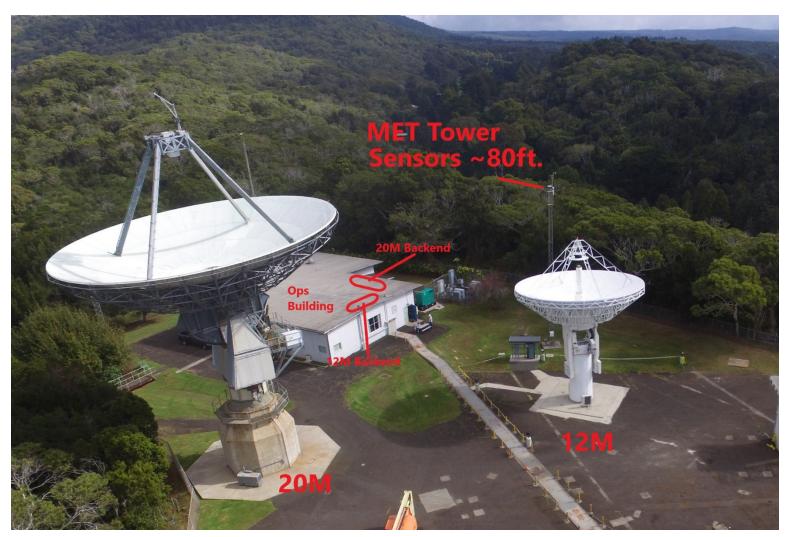
aen_vmlinux GUI phase-delay

KOKEE: cablecal; no phasecal; KOKEE12M: pcmt cablecal applied

	U	sigU	E	sigE	N	sigN	${f L}$	sigL	used	total
16071	-8011.3	3 1.4	20127.	2 0.9	-22343	8 1.0	31121.3	1.3	17	19
16078	-8014.9	0.6	20126.	2 0.5	-22345	6 0.4	31122.8	0.6	99	104
16084	-8014.4	1 0.6	20127.	4 0.5	-22345	7 0.5	31123.6	0.7	99	104
16090	-8014.9	0.3	20126.	7 0.2	-22345.	5 0.2	31123.1	0.3	99	104

KT-sessions: 30-minute clock; posn of K2

aen_vmlinux GUI group-delay


KOKEE: cablecal; no phasecal; KOKEE12M: no cablecal applied

	U	sig	rU E	sig	jE N	sigl	N L	sigL	used	total
16071	-3.17	6.74	-4.19	2.86	0.73	2.59	31121.25	6.84	17	19
16078	1.53	2.45	1.03	1.15	-1.77	1.40	31125.21	3.36	99	104
16084	4.72	3.62	-1.96	1.86	2.30	1.61	31119.53	4.27	90	98
16090	0.09	1.00	-0.01	0.48	0.14	0.47	31123.53	1.24	410	427

NGS survey 2015 November (reported by Jim Long)

U sigU E sigE N sigN L sigL used total 16069 -8020.1 2.0 20128.8 2.0 -22345.2 2.0 31125.5 2.0 1 1

Local ties at KPGO (Kokee Park Geophysical Observatory)

