

An analytical VLBI delay formula for Earth satellites

Frédéric Jaron, Axel Nothnagel

Institute of Geodesy and Geoinformation, University of Bonn, Germany

24th Meeting of the European VLBI Group for Geodesy and Astrometry

Las Palmas, Gran Canaria, Spain

March 19, 2019

Geodetic VLBI observations of Earth satellites

Geodetic VLBI observations of Earth satellites

Idea:

Include observations of Earth satellites into geodetic VLBI sessions.

Geodetic VLBI observations of Earth satellites

Idea:

Include observations of Earth satellites into geodetic VLBI sessions.

Why?

 Improve frame-ties between celestial and terrestrial reference frames Plank 2014, PhD thesis

Geodetic VLBI observations of Earth satellites

Idea:

Include observations of Earth satellites into geodetic VLBI sessions.

Why?

 Improve frame-ties between celestial and terrestrial reference frames Plank 2014. PhD thesis

Geodetic VLBI observations of Earth satellites

Idea:

Include observations of Earth satellites into geodetic VLBI sessions.

Why?

 Improve frame-ties between celestial and terrestrial reference frames Plank 2014. PhD thesis

Technical challenges Haas et al. 2017, Plank et al. 2017, JGeod

Tracking moving targets with radio telescopes

Geodetic VLBI observations of Earth satellites

Idea:

Include observations of Earth satellites into geodetic VLBI sessions.

Why?

 Improve frame-ties between celestial and terrestrial reference frames Plank 2014, PhD thesis

- Tracking moving targets with radio telescopes
- No satellite emitting a signal optimized for geodetic VLBI
 - → Poster by Ahmad Jaradat on P109

Geodetic VLBI observations of Earth satellites

Idea:

Include observations of Earth satellites into geodetic VLBI sessions.

Why?

 Improve frame-ties between celestial and terrestrial reference frames Plank 2014, PhD thesis

- Tracking moving targets with radio telescopes
- No satellite emitting a signal optimized for geodetic VLBI
 → Poster by Ahmad Jaradat on P109
- Fringe-fitting artifical radio signals
 - \rightarrow Klopotek *et al.* 2019, Earth Planets Space, 71:23 \rightarrow Next talk!

Geodetic VLBI observations of Earth satellites

Idea:

Include observations of Earth satellites into geodetic VLBI sessions.

Why?

 Improve frame-ties between celestial and terrestrial reference frames Plank 2014, PhD thesis

- Tracking moving targets with radio telescopes
- No satellite emitting a signal optimized for geodetic VLBI
- ightarrow Poster by Ahmad Jaradat on P109
- Fringe-fitting artifical radio signals
 → Klopotek et al. 2019, Earth Planets Space, 71:23
 → Next talk!
- Suitable modelling of the VLBI delay \rightarrow This talk...

Signal propagation

Signal propagation

Signal propagation

Modelling the delay

Geometry at reception time t_1

1 To find t_0 and $\mathbf{x}_0(t_0)$, vary t_0 until

$$t_0 = t_1 - \frac{|\mathbf{x}_1(t_1) - \mathbf{x}_0(t_0)|}{c} - t_{g01}$$

1 To find t_0 and $\mathbf{x}_0(t_0)$, vary t_0 until

$$t_0 = t_1 - \frac{|\mathbf{x}_1(t_1) - \mathbf{x}_0(t_0)|}{c} - t_{g01}$$

1 To find t_0 and $\mathbf{x}_0(t_0)$, vary t_0 until

$$t_0 = t_1 - \frac{|\mathbf{x}_1(t_1) - \mathbf{x}_0(t_0)|}{c} - t_{g01}$$

 $oldsymbol{1}$ To find t_0 and $\mathbf{x}_0(t_0)$, vary t_0 until

$$t_0 = t_1 - \frac{|\mathbf{x}_1(t_1) - \mathbf{x}_0(t_0)|}{c} - t_{g01}$$

is fulfilled to desired precision.

2 To find t_2 and $\mathbf{x}_2(t_2)$, vary t_2 until

$$t_2 = t_0 + \frac{|\mathbf{x}_2(t_2) - \mathbf{x}_0(t_0)|}{c} + t_{g02}$$

 $oldsymbol{0}$ To find t_0 and $\mathbf{x}_0(t_0)$, vary t_0 until

$$t_0 = t_1 - \frac{|\mathbf{x}_1(t_1) - \mathbf{x}_0(t_0)|}{c} - t_{g01}$$

is fulfilled to desired precision.

2 To find t_2 and $\mathbf{x}_2(t_2)$, vary t_2 until

$$t_2 = t_0 + \frac{|\mathbf{x}_2(t_2) - \mathbf{x}_0(t_0)|}{c} + t_{g02}$$

Modelling the delay

Solving the light-time-equations

 $oldsymbol{0}$ To find t_0 and $\mathbf{x}_0(t_0)$, vary t_0 until

$$t_0 = t_1 - \frac{|\mathbf{x}_1(t_1) - \mathbf{x}_0(t_0)|}{c} - t_{g01}$$

is fulfilled to desired precision.

2 To find t_2 and $\mathbf{x}_2(t_2)$, vary t_2 until

$$t_2 = t_0 + \frac{|\mathbf{x}_2(t_2) - \mathbf{x}_0(t_0)|}{c} + t_{g02}$$

1 To find t_0 and $\mathbf{x}_0(t_0)$, vary t_0 until

$$t_0 = t_1 - \frac{|\mathbf{x}_1(t_1) - \mathbf{x}_0(t_0)|}{c} - t_{g01}$$

is fulfilled to desired precision.

2 To find t_2 and $\mathbf{x}_2(t_2)$, vary t_2 until

$$t_2 = t_0 + \frac{|\mathbf{x}_2(t_2) - \mathbf{x}_0(t_0)|}{c} + t_{g02}$$

Usual approach: Numerical method (e.g., Newton-Raphson)

Sekido & Fukushima, 2006, JGeod, 80, 3

Duev et al., 2012, A&A, 541, A43

Usual approach: Numerical method (e.g., Newton-Raphson)

Sekido & Fukushima, 2006, JGeod, 80, 3 Duev *et al.*, 2012, A&A, 541, A43

Can the light-time-equation be solved

- analytically
- linearizing the problem?

Usual approach: Numerical method (e.g., Newton-Raphson)

Sekido & Fukushima, 2006, JGeod, 80, 3 Duev *et al.*, 2012, A&A, 541, A43

Can the light-time-equation be solved

- analytically
- linearizing the problem?
- \rightarrow Yes!

Analytical delay formula

The difference in signal arrival times, in GCRS, is

$$\tau_{\text{TGC}} = t_2 - t_1 = t_2 - t_0 + t_0 - t_1 = \Delta t_2 + \Delta t_0,$$

Transforming to the terrestrial time,

$$\tau_{\rm TT} = (\Delta t_2 + \Delta t_0) \left(1 - L_G \right),\,$$

with

$$\Delta t_0 = \gamma_0^2 \left[\frac{\vec{x}_{01} \cdot \vec{v}_0}{c^2} - t_{g\,01} \right] - \sqrt{\gamma_0^4 \left[\frac{\vec{x}_{01} \cdot \vec{v}_0}{c^2} - t_{g\,01} \right]^2 + \gamma_0^2 \left[\frac{x_{01}^2}{c^2} - t_{g\,01}^2 \right]},$$

and

$$\Delta t_2 = \gamma_2^2 \left[t_{g \, 02} - \frac{\vec{x}_{02} \cdot \vec{v}_2}{c^2} \right] + \sqrt{\gamma_2^4 \left[t_{g \, 02} - \frac{\vec{x}_{02} \cdot \vec{v}_2}{c^2} \right]^2 + \gamma_2^2 \left[\frac{x_{02}^2}{c^2} - t_{g \, 02}^2 \right]}.$$

For details see Jaron & Nothnagel, 2018, JGeod .

Testing the model

Differences between analytical and numerical solution?

- How large?
- Any systematics?

Testing the model

- Satellite \mathbf{x}_0 at a configurable altitude h, circular orbit, $\omega_{\mathrm{sat}} = \sqrt{\frac{GM}{(h+R)^3}}$.
- Two stations at x_1 and x_2 on surface of rotating Earth.

Applicability to GRASP and E-GRASP

Proposed co-location of SLR, GNSS, DORIS, and VLBI, in space:

- ullet GRASP e=0.03 Bar-Sever et al. 2009
- \bullet E-GRASP e=0.3 Biancale et al. 2017

Kepler's equation: $E = M + e \sin E$

Mean anomaly: $M = M_0 + n(t - \tau)$

Angular velocity: $n = \sqrt{\frac{GM_{\rm Earth}}{a^3}}$

Observing perigee passage 10^5 times with random baselines results in:

< |analytical - numerical| >

GRASP: $(1.6 \pm 1.5) \, 10^{-21} \, \mathrm{s}$

E-GRASP: $(2.3 \pm 2.0) 10^{-21}$ s

Exploring the parameter space

Simulating 10^6 random observations

Dependency on eccentricity

$$d = \frac{1}{N} \sum_{i=1}^{N} |\tau_{\text{ana},i} - \tau_{\text{num},i}|$$

d [s]	e-range
$(7.3 \pm 14.1) 10^{-20}$	0.0 - 0.9
$(1.6 \pm 358) 10^{-15}$	0.9 - 1.0
$(1.5 \pm 108) 10^{-16}$	0.0 - 1.0

|analytical - numerical| < 1 ps

Conclusions

- Light-time equation has an analytical solution when linearized.
- ② For Earth satellites: differences between numerical and analytical solution is way below the detection limit of VLBI.
- Analytical delay formula implies analytical partial derivatives.

Jaron & Nothnagel, 2018, JGeod

Conclusions

- Light-time equation has an analytical solution when linearized.
- For Earth satellites: differences between numerical and analytical solution is way below the detection limit of VLBI.
- Analytical delay formula implies analytical partial derivatives.

Jaron & Nothnagel, 2018, JGeod

Thank you!

Appendix

Analytical solution for t_0

Linearize satellite orbit around t_1 ,

$$\vec{x}_{0,\text{lin}}(t) = \vec{x}_0(t_1) + \vec{v}_0(t_1) \cdot [t - t_1]. \tag{1}$$

Analytical solution for t_0

Linearize satellite orbit around t_1 ,

$$\vec{x}_{0,\text{lin}}(t) = \vec{x}_0(t_1) + \vec{v}_0(t_1) \cdot [t - t_1].$$
 (1)

Shift time-axis such that $t_1 = 0$,

$$\vec{x}_{0, \text{lin}}(t) = \vec{x}_0 + \vec{v}_0 \cdot t.$$
 (2)

Linearize satellite orbit around t_1 ,

$$\vec{x}_{0, \text{lin}}(t) = \vec{x}_0(t_1) + \vec{v}_0(t_1) \cdot [t - t_1]. \tag{1}$$

Shift time-axis such that $t_1 = 0$,

$$\vec{x}_{0, \text{lin}}(t) = \vec{x}_0 + \vec{v}_0 \cdot t.$$
 (2)

Light-time-equation for t_0 ,

$$t_0 = -\frac{|\vec{x}_0(t_0) - \vec{x}_1|}{c} - t_{g\,01}.\tag{3}$$

Analytical solution for t_0

Linearize satellite orbit around t_1 ,

$$\vec{x}_{0, \text{lin}}(t) = \vec{x}_0(t_1) + \vec{v}_0(t_1) \cdot [t - t_1]. \tag{1}$$

Shift time-axis such that $t_1 = 0$,

$$\vec{x}_{0, \text{lin}}(t) = \vec{x}_0 + \vec{v}_0 \cdot t.$$
 (2)

Light-time-equation for t_0 ,

$$t_0 = -\frac{|\vec{x}_0(t_0) - \vec{x}_1|}{c} - t_{g\,01}.\tag{3}$$

Inserting (2) into (3) yields

$$t_0 = -\frac{|\vec{x}_0 + \vec{v}_0 \cdot t_0 - \vec{x}_1|}{c} - t_{g \, 01}. \tag{4}$$

Analytical solution for t_0

$$t_0 = -\frac{|\vec{x}_0 + \vec{v}_0 \cdot t_0 - \vec{x}_1|}{c} - t_{g\,01}. \tag{4}$$

$$t_0 = -\frac{|\vec{x}_0 + \vec{v}_0 \cdot t_0 - \vec{x}_1|}{c} - t_{g\,01}.\tag{4}$$

$$\Rightarrow [t_0 + t_{g\,01}]^2 = \frac{|\vec{x}_0 + \vec{v}_0 \cdot t_0 - \vec{x}_1|^2}{c^2} \tag{5}$$

$$t_0 = -\frac{|\vec{x}_0 + \vec{v}_0 \cdot t_0 - \vec{x}_1|}{c} - t_{g \, 01}. \tag{4}$$

$$\Rightarrow [t_0 + t_{g\,01}]^2 = \frac{|\vec{x}_0 + \vec{v}_0 \cdot t_0 - \vec{x}_1|^2}{c^2} \tag{5}$$

Quadratic equation in t_0 with the two formal solutions

$$t_{0} = \gamma_{0}^{2} \left[\frac{\vec{x}_{01} \cdot \vec{v}_{0}}{c^{2}} - t_{g \, 01} \right]$$

$$\pm \sqrt{\gamma_{0}^{4} \left[\frac{\vec{x}_{01} \cdot \vec{v}_{0}}{c^{2}} - t_{g \, 01} \right]^{2} + \gamma_{0}^{2} \left[\frac{x_{01}^{2}}{c^{2}} - t_{g \, 01}^{2} \right]}, \quad (6)$$

with $\vec{x}_{01} = \vec{x}_0 - \vec{x}_1$ and $\gamma_0^2 = \left(1 - v_0^2/c^2\right)^{-1}$.

$$t_0 = -\frac{|\vec{x}_0 + \vec{v}_0 \cdot t_0 - \vec{x}_1|}{c} - t_{g \, 01}. \tag{4}$$

$$\Rightarrow [t_0 + t_{g\,01}]^2 = \frac{|\vec{x}_0 + \vec{v}_0 \cdot t_0 - \vec{x}_1|^2}{c^2} \tag{5}$$

Since t_0 has to be negative, the correct solution is

$$t_{0} = \gamma_{0}^{2} \left[\frac{\vec{x}_{01} \cdot \vec{v}_{0}}{c^{2}} - t_{g \, 01} \right] - \sqrt{\gamma_{0}^{4} \left[\frac{\vec{x}_{01} \cdot \vec{v}_{0}}{c^{2}} - t_{g \, 01} \right]^{2} + \gamma_{0}^{2} \left[\frac{x_{01}^{2}}{c^{2}} - t_{g \, 01}^{2} \right]}, \quad (6)$$

with $\vec{x}_{01} = \vec{x}_0 - \vec{x}_1$ and $\gamma_0^2 = (1 - v_0^2/c^2)^{-1}$.

Linearize position of station 2 around t_1 ,

$$\vec{x}_{2, \text{lin}}(t) = \vec{x}_2(t_1) + \vec{v}_2(t_1) \cdot [t - t_1] \stackrel{t_1 = 0}{=} \vec{x}_2 + \vec{v}_2 t.$$
 (7)

Linearize position of station 2 around t_1 ,

$$\vec{x}_{2,\text{lin}}(t) = \vec{x}_2(t_1) + \vec{v}_2(t_1) \cdot [t - t_1] \stackrel{t_1 = 0}{=} \vec{x}_2 + \vec{v}_2 t.$$
 (7)

Light-time-equation for t_2 ,

$$t_2 = t_0 + \frac{|\vec{x}_0(t_0) - \vec{x}_2(t_2)|}{c} + t_{g \, 02}. \tag{8}$$

Linearize position of station 2 around t_1 ,

$$\vec{x}_{2, \text{lin}}(t) = \vec{x}_2(t_1) + \vec{v}_2(t_1) \cdot [t - t_1] \stackrel{t_1 = 0}{=} \vec{x}_2 + \vec{v}_2 t.$$
 (7)

Light-time-equation for t_2 ,

$$t_2 = t_0 + \frac{|\vec{x}_0(t_0) - \vec{x}_2(t_2)|}{c} + t_{g \, 02}. \tag{8}$$

Introducing the light-travel time $\Delta t_2 = t_2 - t_0$,

$$\Delta t_2 = \frac{|\vec{x}_0(t_0) - \vec{x}_2(\Delta t_2 + t_0)|}{c} + t_{g\,02}.\tag{9}$$

Linearize position of station 2 around t_1 ,

$$\vec{x}_{2, \text{lin}}(t) = \vec{x}_2(t_1) + \vec{v}_2(t_1) \cdot [t - t_1] \stackrel{t_1 = 0}{=} \vec{x}_2 + \vec{v}_2 t.$$
 (7)

Light-time-equation for t_2 ,

$$t_2 = t_0 + \frac{|\vec{x}_0(t_0) - \vec{x}_2(t_2)|}{c} + t_{g \, 02}. \tag{8}$$

Introducing the light-travel time $\Delta t_2 = t_2 - t_0$,

$$\Delta t_2 = \frac{|\vec{x}_0(t_0) - \vec{x}_2(\Delta t_2 + t_0)|}{c} + t_{g\,02}.\tag{9}$$

Inserting (2) and (7) into (9) yields

$$\Delta t_2 = \frac{|\vec{x}_0 + \vec{v}_0 t_0 - [\vec{x}_2 + \vec{v}_2 [\Delta t_2 + t_0]]|}{c} + t_{g \, 02} \tag{10}$$

$$\Delta t_{2} = \frac{|\vec{x}_{0} + \vec{v}_{0}t_{0} - [\vec{x}_{2} + \vec{v}_{2}[\Delta t_{2} + t_{0}]]|}{c} + t_{g\,02}$$

$$= \frac{|\vec{x}_{02}(t_{0}) - \vec{v}_{2}\Delta t_{2}|}{c} + t_{g\,02}, \tag{11}$$

with
$$\vec{x}_{02} = \vec{x}_0 - \vec{x}_2 + [\vec{v}_0 - \vec{v}_2]t_0$$
.

$$\Delta t_{2} = \frac{|\vec{x}_{0} + \vec{v}_{0}t_{0} - [\vec{x}_{2} + \vec{v}_{2}[\Delta t_{2} + t_{0}]]|}{c} + t_{g\,02}$$

$$= \frac{|\vec{x}_{02}(t_{0}) - \vec{v}_{2}\Delta t_{2}|}{c} + t_{g\,02}, \tag{11}$$

with $\vec{x}_{02} = \vec{x}_0 - \vec{x}_2 + [\vec{v}_0 - \vec{v}_2]t_0$.

$$(11) \Rightarrow \left[\Delta t_2 - t_{g \, 02}\right]^2 = \frac{\left[\vec{x}_{02} - \vec{v}_2 \Delta t_2\right]^2}{c^2} \tag{12}$$

$$\Delta t_{2} = \frac{|\vec{x}_{0} + \vec{v}_{0}t_{0} - [\vec{x}_{2} + \vec{v}_{2}[\Delta t_{2} + t_{0}]]|}{c} + t_{g\,02}$$

$$= \frac{|\vec{x}_{02}(t_{0}) - \vec{v}_{2}\Delta t_{2}|}{c} + t_{g\,02}, \tag{11}$$

with $\vec{x}_{02} = \vec{x}_0 - \vec{x}_2 + [\vec{v}_0 - \vec{v}_2]t_0$.

$$(11) \Rightarrow \left[\Delta t_2 - t_{g \, 02}\right]^2 = \frac{\left[\vec{x}_{02} - \vec{v}_2 \Delta t_2\right]^2}{c^2} \tag{12}$$

with the two formal solutions

$$\Delta t_{2} = \gamma_{2}^{2} \left[t_{g \, 02} - \frac{\vec{x}_{02} \cdot \vec{v}_{2}}{c^{2}} \right]$$

$$\pm \sqrt{\gamma_{2}^{4} \left[t_{g \, 02} - \frac{\vec{x}_{02} \cdot \vec{v}_{2}}{c^{2}} \right]^{2} + \gamma_{2}^{2} \left[\frac{x_{02}^{2}}{c^{2}} - t_{g \, 02}^{2} \right]}, \quad (13)$$

where $\gamma_2^2 = (1 - v_2^2/c^2)^{-1}$.

$$\Delta t_{2} = \frac{|\vec{x}_{0} + \vec{v}_{0}t_{0} - [\vec{x}_{2} + \vec{v}_{2}[\Delta t_{2} + t_{0}]]|}{c} + t_{g\,02}$$

$$= \frac{|\vec{x}_{02}(t_{0}) - \vec{v}_{2}\Delta t_{2}|}{c} + t_{g\,02}, \tag{11}$$

with $\vec{x}_{02} = \vec{x}_0 - \vec{x}_2 + [\vec{v}_0 - \vec{v}_2]t_0$.

$$(11) \Rightarrow \left[\Delta t_2 - t_{g \, 02}\right]^2 = \frac{\left[\vec{x}_{02} - \vec{v}_2 \Delta t_2\right]^2}{c^2} \tag{12}$$

Since the light travel time Δt_2 is positive,

$$\Delta t_{2} = \gamma_{2}^{2} \left[t_{g \, 02} - \frac{\vec{x}_{02} \cdot \vec{v}_{2}}{c^{2}} \right] + \sqrt{\gamma_{2}^{4} \left[t_{g \, 02} - \frac{\vec{x}_{02} \cdot \vec{v}_{2}}{c^{2}} \right]^{2} + \gamma_{2}^{2} \left[\frac{x_{02}^{2}}{c^{2}} - t_{g \, 02}^{2} \right]}, \quad (13)$$

where $\gamma_0^2 = (1 - v_0^2/c^2)^{-1}$.

