An analytical VLBI delay formula for Earth satellites Frédéric Jaron, Axel Nothnagel Institute of Geodesy and Geoinformation, University of Bonn, Germany 24th Meeting of the European VLBI Group for Geodesy and Astrometry Las Palmas, Gran Canaria, Spain March 19, 2019 Geodetic VLBI observations of Earth satellites #### Geodetic VLBI observations of Earth satellites #### Idea: Include observations of Earth satellites into geodetic VLBI sessions. #### Geodetic VLBI observations of Earth satellites #### Idea: Include observations of Earth satellites into geodetic VLBI sessions. #### Why? Improve frame-ties between celestial and terrestrial reference frames Plank 2014, PhD thesis #### Geodetic VLBI observations of Earth satellites #### Idea: Include observations of Earth satellites into geodetic VLBI sessions. #### Why? Improve frame-ties between celestial and terrestrial reference frames Plank 2014. PhD thesis #### Geodetic VLBI observations of Earth satellites #### Idea: Include observations of Earth satellites into geodetic VLBI sessions. #### Why? Improve frame-ties between celestial and terrestrial reference frames Plank 2014. PhD thesis Technical challenges Haas et al. 2017, Plank et al. 2017, JGeod Tracking moving targets with radio telescopes #### Geodetic VLBI observations of Earth satellites #### Idea: Include observations of Earth satellites into geodetic VLBI sessions. #### Why? Improve frame-ties between celestial and terrestrial reference frames Plank 2014, PhD thesis - Tracking moving targets with radio telescopes - No satellite emitting a signal optimized for geodetic VLBI - → Poster by Ahmad Jaradat on P109 #### Geodetic VLBI observations of Earth satellites #### Idea: Include observations of Earth satellites into geodetic VLBI sessions. #### Why? Improve frame-ties between celestial and terrestrial reference frames Plank 2014, PhD thesis - Tracking moving targets with radio telescopes - No satellite emitting a signal optimized for geodetic VLBI → Poster by Ahmad Jaradat on P109 - Fringe-fitting artifical radio signals - \rightarrow Klopotek *et al.* 2019, Earth Planets Space, 71:23 \rightarrow Next talk! #### Geodetic VLBI observations of Earth satellites #### Idea: Include observations of Earth satellites into geodetic VLBI sessions. #### Why? Improve frame-ties between celestial and terrestrial reference frames Plank 2014, PhD thesis - Tracking moving targets with radio telescopes - No satellite emitting a signal optimized for geodetic VLBI - ightarrow Poster by Ahmad Jaradat on P109 - Fringe-fitting artifical radio signals → Klopotek et al. 2019, Earth Planets Space, 71:23 → Next talk! - Suitable modelling of the VLBI delay \rightarrow This talk... # Signal propagation # Signal propagation # Signal propagation # Modelling the delay #### Geometry at reception time t_1 **1** To find t_0 and $\mathbf{x}_0(t_0)$, vary t_0 until $$t_0 = t_1 - \frac{|\mathbf{x}_1(t_1) - \mathbf{x}_0(t_0)|}{c} - t_{g01}$$ **1** To find t_0 and $\mathbf{x}_0(t_0)$, vary t_0 until $$t_0 = t_1 - \frac{|\mathbf{x}_1(t_1) - \mathbf{x}_0(t_0)|}{c} - t_{g01}$$ **1** To find t_0 and $\mathbf{x}_0(t_0)$, vary t_0 until $$t_0 = t_1 - \frac{|\mathbf{x}_1(t_1) - \mathbf{x}_0(t_0)|}{c} - t_{g01}$$ $oldsymbol{1}$ To find t_0 and $\mathbf{x}_0(t_0)$, vary t_0 until $$t_0 = t_1 - \frac{|\mathbf{x}_1(t_1) - \mathbf{x}_0(t_0)|}{c} - t_{g01}$$ is fulfilled to desired precision. 2 To find t_2 and $\mathbf{x}_2(t_2)$, vary t_2 until $$t_2 = t_0 + \frac{|\mathbf{x}_2(t_2) - \mathbf{x}_0(t_0)|}{c} + t_{g02}$$ $oldsymbol{0}$ To find t_0 and $\mathbf{x}_0(t_0)$, vary t_0 until $$t_0 = t_1 - \frac{|\mathbf{x}_1(t_1) - \mathbf{x}_0(t_0)|}{c} - t_{g01}$$ is fulfilled to desired precision. 2 To find t_2 and $\mathbf{x}_2(t_2)$, vary t_2 until $$t_2 = t_0 + \frac{|\mathbf{x}_2(t_2) - \mathbf{x}_0(t_0)|}{c} + t_{g02}$$ # Modelling the delay ### Solving the light-time-equations $oldsymbol{0}$ To find t_0 and $\mathbf{x}_0(t_0)$, vary t_0 until $$t_0 = t_1 - \frac{|\mathbf{x}_1(t_1) - \mathbf{x}_0(t_0)|}{c} - t_{g01}$$ is fulfilled to desired precision. 2 To find t_2 and $\mathbf{x}_2(t_2)$, vary t_2 until $$t_2 = t_0 + \frac{|\mathbf{x}_2(t_2) - \mathbf{x}_0(t_0)|}{c} + t_{g02}$$ **1** To find t_0 and $\mathbf{x}_0(t_0)$, vary t_0 until $$t_0 = t_1 - \frac{|\mathbf{x}_1(t_1) - \mathbf{x}_0(t_0)|}{c} - t_{g01}$$ is fulfilled to desired precision. 2 To find t_2 and $\mathbf{x}_2(t_2)$, vary t_2 until $$t_2 = t_0 + \frac{|\mathbf{x}_2(t_2) - \mathbf{x}_0(t_0)|}{c} + t_{g02}$$ Usual approach: Numerical method (e.g., Newton-Raphson) Sekido & Fukushima, 2006, JGeod, 80, 3 Duev et al., 2012, A&A, 541, A43 Usual approach: Numerical method (e.g., Newton-Raphson) Sekido & Fukushima, 2006, JGeod, 80, 3 Duev *et al.*, 2012, A&A, 541, A43 Can the light-time-equation be solved - analytically - linearizing the problem? Usual approach: Numerical method (e.g., Newton-Raphson) Sekido & Fukushima, 2006, JGeod, 80, 3 Duev *et al.*, 2012, A&A, 541, A43 Can the light-time-equation be solved - analytically - linearizing the problem? - \rightarrow Yes! ### Analytical delay formula The difference in signal arrival times, in GCRS, is $$\tau_{\text{TGC}} = t_2 - t_1 = t_2 - t_0 + t_0 - t_1 = \Delta t_2 + \Delta t_0,$$ Transforming to the terrestrial time, $$\tau_{\rm TT} = (\Delta t_2 + \Delta t_0) \left(1 - L_G \right),\,$$ with $$\Delta t_0 = \gamma_0^2 \left[\frac{\vec{x}_{01} \cdot \vec{v}_0}{c^2} - t_{g\,01} \right] - \sqrt{\gamma_0^4 \left[\frac{\vec{x}_{01} \cdot \vec{v}_0}{c^2} - t_{g\,01} \right]^2 + \gamma_0^2 \left[\frac{x_{01}^2}{c^2} - t_{g\,01}^2 \right]},$$ and $$\Delta t_2 = \gamma_2^2 \left[t_{g \, 02} - \frac{\vec{x}_{02} \cdot \vec{v}_2}{c^2} \right] + \sqrt{\gamma_2^4 \left[t_{g \, 02} - \frac{\vec{x}_{02} \cdot \vec{v}_2}{c^2} \right]^2 + \gamma_2^2 \left[\frac{x_{02}^2}{c^2} - t_{g \, 02}^2 \right]}.$$ For details see Jaron & Nothnagel, 2018, JGeod . # Testing the model Differences between analytical and numerical solution? - How large? - Any systematics? # Testing the model - Satellite \mathbf{x}_0 at a configurable altitude h, circular orbit, $\omega_{\mathrm{sat}} = \sqrt{\frac{GM}{(h+R)^3}}$. - Two stations at x_1 and x_2 on surface of rotating Earth. ### Applicability to GRASP and E-GRASP Proposed co-location of SLR, GNSS, DORIS, and VLBI, in space: - ullet GRASP e=0.03 Bar-Sever et al. 2009 - \bullet E-GRASP e=0.3 Biancale et al. 2017 Kepler's equation: $E = M + e \sin E$ Mean anomaly: $M = M_0 + n(t - \tau)$ Angular velocity: $n = \sqrt{\frac{GM_{\rm Earth}}{a^3}}$ Observing perigee passage 10^5 times with random baselines results in: < |analytical - numerical| > GRASP: $(1.6 \pm 1.5) \, 10^{-21} \, \mathrm{s}$ E-GRASP: $(2.3 \pm 2.0) 10^{-21}$ s ### Exploring the parameter space ### Simulating 10^6 random observations #### Dependency on eccentricity $$d = \frac{1}{N} \sum_{i=1}^{N} |\tau_{\text{ana},i} - \tau_{\text{num},i}|$$ | d [s] | e-range | |----------------------------|-----------| | $(7.3 \pm 14.1) 10^{-20}$ | 0.0 - 0.9 | | $(1.6 \pm 358) 10^{-15}$ | 0.9 - 1.0 | | $(1.5 \pm 108) 10^{-16}$ | 0.0 - 1.0 | |analytical - numerical| < 1 ps ### Conclusions - Light-time equation has an analytical solution when linearized. - ② For Earth satellites: differences between numerical and analytical solution is way below the detection limit of VLBI. - Analytical delay formula implies analytical partial derivatives. Jaron & Nothnagel, 2018, JGeod ### **Conclusions** - Light-time equation has an analytical solution when linearized. - For Earth satellites: differences between numerical and analytical solution is way below the detection limit of VLBI. - Analytical delay formula implies analytical partial derivatives. Jaron & Nothnagel, 2018, JGeod # Thank you! # Appendix ### Analytical solution for t_0 Linearize satellite orbit around t_1 , $$\vec{x}_{0,\text{lin}}(t) = \vec{x}_0(t_1) + \vec{v}_0(t_1) \cdot [t - t_1]. \tag{1}$$ # Analytical solution for t_0 Linearize satellite orbit around t_1 , $$\vec{x}_{0,\text{lin}}(t) = \vec{x}_0(t_1) + \vec{v}_0(t_1) \cdot [t - t_1].$$ (1) Shift time-axis such that $t_1 = 0$, $$\vec{x}_{0, \text{lin}}(t) = \vec{x}_0 + \vec{v}_0 \cdot t.$$ (2) Linearize satellite orbit around t_1 , $$\vec{x}_{0, \text{lin}}(t) = \vec{x}_0(t_1) + \vec{v}_0(t_1) \cdot [t - t_1]. \tag{1}$$ Shift time-axis such that $t_1 = 0$, $$\vec{x}_{0, \text{lin}}(t) = \vec{x}_0 + \vec{v}_0 \cdot t.$$ (2) Light-time-equation for t_0 , $$t_0 = -\frac{|\vec{x}_0(t_0) - \vec{x}_1|}{c} - t_{g\,01}.\tag{3}$$ # Analytical solution for t_0 Linearize satellite orbit around t_1 , $$\vec{x}_{0, \text{lin}}(t) = \vec{x}_0(t_1) + \vec{v}_0(t_1) \cdot [t - t_1]. \tag{1}$$ Shift time-axis such that $t_1 = 0$, $$\vec{x}_{0, \text{lin}}(t) = \vec{x}_0 + \vec{v}_0 \cdot t.$$ (2) Light-time-equation for t_0 , $$t_0 = -\frac{|\vec{x}_0(t_0) - \vec{x}_1|}{c} - t_{g\,01}.\tag{3}$$ Inserting (2) into (3) yields $$t_0 = -\frac{|\vec{x}_0 + \vec{v}_0 \cdot t_0 - \vec{x}_1|}{c} - t_{g \, 01}. \tag{4}$$ # Analytical solution for t_0 $$t_0 = -\frac{|\vec{x}_0 + \vec{v}_0 \cdot t_0 - \vec{x}_1|}{c} - t_{g\,01}. \tag{4}$$ $$t_0 = -\frac{|\vec{x}_0 + \vec{v}_0 \cdot t_0 - \vec{x}_1|}{c} - t_{g\,01}.\tag{4}$$ $$\Rightarrow [t_0 + t_{g\,01}]^2 = \frac{|\vec{x}_0 + \vec{v}_0 \cdot t_0 - \vec{x}_1|^2}{c^2} \tag{5}$$ $$t_0 = -\frac{|\vec{x}_0 + \vec{v}_0 \cdot t_0 - \vec{x}_1|}{c} - t_{g \, 01}. \tag{4}$$ $$\Rightarrow [t_0 + t_{g\,01}]^2 = \frac{|\vec{x}_0 + \vec{v}_0 \cdot t_0 - \vec{x}_1|^2}{c^2} \tag{5}$$ Quadratic equation in t_0 with the two formal solutions $$t_{0} = \gamma_{0}^{2} \left[\frac{\vec{x}_{01} \cdot \vec{v}_{0}}{c^{2}} - t_{g \, 01} \right]$$ $$\pm \sqrt{\gamma_{0}^{4} \left[\frac{\vec{x}_{01} \cdot \vec{v}_{0}}{c^{2}} - t_{g \, 01} \right]^{2} + \gamma_{0}^{2} \left[\frac{x_{01}^{2}}{c^{2}} - t_{g \, 01}^{2} \right]}, \quad (6)$$ with $\vec{x}_{01} = \vec{x}_0 - \vec{x}_1$ and $\gamma_0^2 = \left(1 - v_0^2/c^2\right)^{-1}$. $$t_0 = -\frac{|\vec{x}_0 + \vec{v}_0 \cdot t_0 - \vec{x}_1|}{c} - t_{g \, 01}. \tag{4}$$ $$\Rightarrow [t_0 + t_{g\,01}]^2 = \frac{|\vec{x}_0 + \vec{v}_0 \cdot t_0 - \vec{x}_1|^2}{c^2} \tag{5}$$ Since t_0 has to be negative, the correct solution is $$t_{0} = \gamma_{0}^{2} \left[\frac{\vec{x}_{01} \cdot \vec{v}_{0}}{c^{2}} - t_{g \, 01} \right] - \sqrt{\gamma_{0}^{4} \left[\frac{\vec{x}_{01} \cdot \vec{v}_{0}}{c^{2}} - t_{g \, 01} \right]^{2} + \gamma_{0}^{2} \left[\frac{x_{01}^{2}}{c^{2}} - t_{g \, 01}^{2} \right]}, \quad (6)$$ with $\vec{x}_{01} = \vec{x}_0 - \vec{x}_1$ and $\gamma_0^2 = (1 - v_0^2/c^2)^{-1}$. Linearize position of station 2 around t_1 , $$\vec{x}_{2, \text{lin}}(t) = \vec{x}_2(t_1) + \vec{v}_2(t_1) \cdot [t - t_1] \stackrel{t_1 = 0}{=} \vec{x}_2 + \vec{v}_2 t.$$ (7) Linearize position of station 2 around t_1 , $$\vec{x}_{2,\text{lin}}(t) = \vec{x}_2(t_1) + \vec{v}_2(t_1) \cdot [t - t_1] \stackrel{t_1 = 0}{=} \vec{x}_2 + \vec{v}_2 t.$$ (7) Light-time-equation for t_2 , $$t_2 = t_0 + \frac{|\vec{x}_0(t_0) - \vec{x}_2(t_2)|}{c} + t_{g \, 02}. \tag{8}$$ Linearize position of station 2 around t_1 , $$\vec{x}_{2, \text{lin}}(t) = \vec{x}_2(t_1) + \vec{v}_2(t_1) \cdot [t - t_1] \stackrel{t_1 = 0}{=} \vec{x}_2 + \vec{v}_2 t.$$ (7) Light-time-equation for t_2 , $$t_2 = t_0 + \frac{|\vec{x}_0(t_0) - \vec{x}_2(t_2)|}{c} + t_{g \, 02}. \tag{8}$$ Introducing the light-travel time $\Delta t_2 = t_2 - t_0$, $$\Delta t_2 = \frac{|\vec{x}_0(t_0) - \vec{x}_2(\Delta t_2 + t_0)|}{c} + t_{g\,02}.\tag{9}$$ Linearize position of station 2 around t_1 , $$\vec{x}_{2, \text{lin}}(t) = \vec{x}_2(t_1) + \vec{v}_2(t_1) \cdot [t - t_1] \stackrel{t_1 = 0}{=} \vec{x}_2 + \vec{v}_2 t.$$ (7) Light-time-equation for t_2 , $$t_2 = t_0 + \frac{|\vec{x}_0(t_0) - \vec{x}_2(t_2)|}{c} + t_{g \, 02}. \tag{8}$$ Introducing the light-travel time $\Delta t_2 = t_2 - t_0$, $$\Delta t_2 = \frac{|\vec{x}_0(t_0) - \vec{x}_2(\Delta t_2 + t_0)|}{c} + t_{g\,02}.\tag{9}$$ Inserting (2) and (7) into (9) yields $$\Delta t_2 = \frac{|\vec{x}_0 + \vec{v}_0 t_0 - [\vec{x}_2 + \vec{v}_2 [\Delta t_2 + t_0]]|}{c} + t_{g \, 02} \tag{10}$$ $$\Delta t_{2} = \frac{|\vec{x}_{0} + \vec{v}_{0}t_{0} - [\vec{x}_{2} + \vec{v}_{2}[\Delta t_{2} + t_{0}]]|}{c} + t_{g\,02}$$ $$= \frac{|\vec{x}_{02}(t_{0}) - \vec{v}_{2}\Delta t_{2}|}{c} + t_{g\,02}, \tag{11}$$ with $$\vec{x}_{02} = \vec{x}_0 - \vec{x}_2 + [\vec{v}_0 - \vec{v}_2]t_0$$. $$\Delta t_{2} = \frac{|\vec{x}_{0} + \vec{v}_{0}t_{0} - [\vec{x}_{2} + \vec{v}_{2}[\Delta t_{2} + t_{0}]]|}{c} + t_{g\,02}$$ $$= \frac{|\vec{x}_{02}(t_{0}) - \vec{v}_{2}\Delta t_{2}|}{c} + t_{g\,02}, \tag{11}$$ with $\vec{x}_{02} = \vec{x}_0 - \vec{x}_2 + [\vec{v}_0 - \vec{v}_2]t_0$. $$(11) \Rightarrow \left[\Delta t_2 - t_{g \, 02}\right]^2 = \frac{\left[\vec{x}_{02} - \vec{v}_2 \Delta t_2\right]^2}{c^2} \tag{12}$$ $$\Delta t_{2} = \frac{|\vec{x}_{0} + \vec{v}_{0}t_{0} - [\vec{x}_{2} + \vec{v}_{2}[\Delta t_{2} + t_{0}]]|}{c} + t_{g\,02}$$ $$= \frac{|\vec{x}_{02}(t_{0}) - \vec{v}_{2}\Delta t_{2}|}{c} + t_{g\,02}, \tag{11}$$ with $\vec{x}_{02} = \vec{x}_0 - \vec{x}_2 + [\vec{v}_0 - \vec{v}_2]t_0$. $$(11) \Rightarrow \left[\Delta t_2 - t_{g \, 02}\right]^2 = \frac{\left[\vec{x}_{02} - \vec{v}_2 \Delta t_2\right]^2}{c^2} \tag{12}$$ with the two formal solutions $$\Delta t_{2} = \gamma_{2}^{2} \left[t_{g \, 02} - \frac{\vec{x}_{02} \cdot \vec{v}_{2}}{c^{2}} \right]$$ $$\pm \sqrt{\gamma_{2}^{4} \left[t_{g \, 02} - \frac{\vec{x}_{02} \cdot \vec{v}_{2}}{c^{2}} \right]^{2} + \gamma_{2}^{2} \left[\frac{x_{02}^{2}}{c^{2}} - t_{g \, 02}^{2} \right]}, \quad (13)$$ where $\gamma_2^2 = (1 - v_2^2/c^2)^{-1}$. $$\Delta t_{2} = \frac{|\vec{x}_{0} + \vec{v}_{0}t_{0} - [\vec{x}_{2} + \vec{v}_{2}[\Delta t_{2} + t_{0}]]|}{c} + t_{g\,02}$$ $$= \frac{|\vec{x}_{02}(t_{0}) - \vec{v}_{2}\Delta t_{2}|}{c} + t_{g\,02}, \tag{11}$$ with $\vec{x}_{02} = \vec{x}_0 - \vec{x}_2 + [\vec{v}_0 - \vec{v}_2]t_0$. $$(11) \Rightarrow \left[\Delta t_2 - t_{g \, 02}\right]^2 = \frac{\left[\vec{x}_{02} - \vec{v}_2 \Delta t_2\right]^2}{c^2} \tag{12}$$ Since the light travel time Δt_2 is positive, $$\Delta t_{2} = \gamma_{2}^{2} \left[t_{g \, 02} - \frac{\vec{x}_{02} \cdot \vec{v}_{2}}{c^{2}} \right] + \sqrt{\gamma_{2}^{4} \left[t_{g \, 02} - \frac{\vec{x}_{02} \cdot \vec{v}_{2}}{c^{2}} \right]^{2} + \gamma_{2}^{2} \left[\frac{x_{02}^{2}}{c^{2}} - t_{g \, 02}^{2} \right]}, \quad (13)$$ where $\gamma_0^2 = (1 - v_0^2/c^2)^{-1}$.