Source Structure effects in the next-generation of VLBI observations

Simin Salarpour, Stanislav Shabala, Lucia McCallum
Jamie McCallum, Chin Chuan Lim
VGOS (VLBI Global Observing System)

- 1mm station position accuracy (based on a 24h observation)
- Continuous measurements of station position and Earth orientation parameters
- Calculation and distribution of products in less than 24 hours
Source Structure

- Most sources have structures
- Position error ≥ 1 mas
- Varies with time and frequency
- Pose limit on reference frame accuracy
- Make problems for geodesy measurements

Legacy VLBI
- S band (2.2–2.4 GHz)
- X band (8.0–8.8 GHz)

VGOS
- Broad bandwidth (2–14 GHz)
Source Selection

- Source 0133+476 (J0136+4751)
- ICRF2-defining, well observed IVS source
- Images in S, X and U bands (2.3, 8.6 and 15.4 GHz)
- Variable structure over time
Image Processing

Astrogeo Center (VLBI image database)

171 images of 0133+476 in S, X and U bands

Total and unresolved flux densities from image header

Automated script (Fitted Components)

Components position parameters

SI calculation
Time series of total flux density and structure index in 8.6 GHz

Source: 0133+476

\[S_{\text{jet}} \approx S_{\text{core}} \]

Time Variability
Visibility Phase function of frequency

- Fixed baseline length
- Different baseline angles

Baseline Length: 5500 km

Baseline angle: 0°

- Fixed baseline angle
- Different baseline lengths
Scheduling with VieSched++
- 1 source
- 11 stations
- 30 seconds source scan
- 10 minutes between scans
- 24 hours session

Source model from automated scripts (Gaussian fitting)

Source structure module of VieVS (Shabala et al. 2015)
Phase wrap changes

Baseline Length

Wrap frequency

Baseline Length

Wrap distribution
Caveats:

- One source
- One epoch
- Only X-band structure
- Image quality (FITS files)
- Automated routine (Fitting model)
- Baseline geometry

Phase wrap percentage as a function of baseline length
Next Steps

- Study more well observed sources
- Improving the routines for automatically deriving the source models
- Connect these theoretical investigations with real observations