EVN observations of the lens system B0128+437

Andy Biggs
Joint Institute for VLBI in Europe (JIVE)
Introduction

- G. lenses are powerful astronomical tools
 - Cosmology – H_0, Ω_m, Ω_λ
 - Galaxy mass, mass distribution
 - Astrophysics
 - Magnetic fields
 - Ionised gas
 - Dust
 - Absorption lines

- Scatter-broadening seen in many systems
CLASS B0128+437

- One of 22 lenses found in JVAS/CLASS
- Four images
- Maximum separation = 540mas (small!)
- Each image resolved by VLBI (rare!)

Phillips et al. 2000
Source has three ‘knots’
None seen in image B!
Surface brightness of B lower than the rest
Cause of distortion

- Image B is probably scatter-broadened
 - More flux detected with ‘Natural’ weighting
- The scattering is spatially dependent
 - Brightest knot undetected

‘Natural’

Missing knot

‘Uniform’
HST H-band imaging

- Image B not seen with NICMOS
- Dust associated with gas in lens galaxy
EVN observations

- 0128 observed with EVN at 1.4 GHz
 - Western EVN + Urumqi
- Source brightest at this frequency
 - Gigahertz Peaked Spectrum (GPS)
- Images get much larger with frequency
 - Modelling constraints
VLBA (+Effelsberg)

2.3 GHz 5 GHz 8.4 GHz

Biggs et al. 2004
EVN observations

- Observed with EVN at 1.4 GHz
 - Western EVN + Urumqi
- Source brightest at this frequency
 - Gigahertz Peaked Spectrum (GPS)
- Images get much larger with frequency
 - Modelling constraints
- New frequency
 - Scattering varies as λ^2
B0128+437 at 1.4 GHz
Lens mass modelling

- Images are created on critical curve
 - Magnification very high
 - Sensitive to galaxy mass model parameters
Lens mass modelling

- Images merge due to larger source size
- Paired components seen between A and B

- Path of critical curve tightly constrained
- Intrinsically very faint part of source
- Extended emission can be LensCleaned
Scatter-broadening

- Surface brightness lowest in B
- A prominent ‘hole’ is visible

- All observations were phase-referenced
- Hole corresponds to missing ‘core’ component
- Scattering parameter can be added to LensClean
Lens substructure

- Axis of C different at low and high
- Can’t model 5-GHz positions
- Rotated by substructure?
- Probably tangentially stretched

![Graph showing observed and model data points]

![Image of a radio interferogram]
Summary and future work

- Image B is scatter-broadened
- Scatterer lies in ISM of the lensing galaxy
- EVN 1.4-GHz data:
 - Provide new model constraints
 - Resolve scattering in image B
- For the future:
 - LensClean of EVN data
 - 15-GHz VLBI may detect missing core in B
 - Search for HI absorption at lens redshift