Hidden bipolarity in cool supergiant circumstellar envelopes

- SiO with in few R_\odot
- H_2O R_{dust} - tens R_\odot
- Molecular chemistry
- Dust annealing
- OH outside H_2O?

Masers in AGB & RSG CSEs

- Using MERLIN, EVN/Global VLBI and VLBA
- Morphology at 0.1 - 1 au resolution
- Kinematics at 0.1 - 0.2 km/s resolution
- Circular and/or linear polarization
- Magnetic shaping of the wind
- Field configuration
- Origin of magnetic field

'Solitary' evolved stars undetectable surface/wind rotation

- Massive: progenitor $> 8 M_\odot$
 - Red Supergiants
 - Also M types, similar T
 - P few yr, even less regular
 - V_{wind} 6 - > 30 km s$^{-1}$
 - $R_c \sim 10 +$ au
 - Cloud $r_{proj} \sim 10$ au
 - $dM/dt > 10^8 M_\odot$/yr
- Low mass: ~ 1 - a few M_\odot
 - SR and Mira variables
 - Late M, T 2000 - 3000 K
 - $P \sim 1$ yr
 - V_{wind} 3 - 15 km s$^{-1}$
 - $R_c \sim 1$ + au
 - Cloud $r_{proj} \sim 1$au
 - $dM/dt \sim 10^7 - 10^8 M_\odot$/yr

- Most SNR (incl. Type 2) axisymmetric
- RSG winds partly biconical
- Magnetic fields
- No degenerate core!
S Per maser shell shapes

- Almost spherical?
- Elliptical distribution of hotspots
- Stellar asphericity:
 - Thompson & Creach-Eakman 03: 2.2μm interferometry
 - Minor axis PA 40°
- Also seen in SiO
- Diamond: ~monthly VLBA monitoring 1999/09-2000/04

OH mainline masers interleave H₂O

- MERLIN H₂O (blue)
- EVN/global mainline OH (contours)
- OH mainlines interleave H₂O
- Clump radii
 - r_OH~9 au
 - r_H₂O~9 au
- OH masers so close to star:
 - T_OH~500 K max?
 - T_H₂O~1000 K

Dust-driven winds

- Some H₂O & OH mainlines reach high velocities
- Some, especially OH 1612, slower
- H₂O clumps dustier, better accelerated
- Tangentially beamed
- Interleaving gas supports OH mainlines near star
- Radially beamed
- OH 1612 further out
- Needs ~steady velocity
OH Asymmetry

- 1999 MERLIN
- OH 1612 MHz
- Axisymmetry for several centuries
- Box shows H$_2$O/
 mainline OH region

OH Zeeman Splitting

- Circular \(V = (RR-LL) \)
- \(B \times \Delta V_2 = \Delta V_{LSR(RR-LL)} \)
 & MHz & \(\mu T/\text{km s}^{-1} \) & 1665 & 0.17
 & 1667 & 0.28
- If \(\Delta V_2 < \Delta V_{LSR} \times dl/dV_{LSR} \)
 & Only measure \(B \parallel \)
- Mitigate by measuring \(\Delta V_{LSR(LR-LL)} \)

Observed:)

- LL, RR, LR, RL Stokess
- I, Q, U, V Davie (74)
- Elitzur
- Watson
- Gray

Contraversies...

Zijlstra et al. 2002

- OH Zeean Splitting
- Linear \(P = \sqrt{Q^2 + L^2} \)
- Pol. angle \(\chi = \text{atan}(U/Q) \)
 & \(\chi \neq 0 \) & \(\parallel \) & \(B \parallel \chi \)
 & \(\chi \neq 0 \) & \(\perp \) & \(B \perp \chi \)
- If \(\Delta V_2 < \Delta V_{LSR} \) & \(i(B) > 55^\circ \)
 & then \(B \perp \chi \) (?)
Zeeman components

- Circular polarization direction (>25% pol.)
- Stokes $V \pm /-$ implies ± 90
- Some clumps dominated by single direction
- Zeeman pairs in EVN data
- $7/2 @ 1665/7$ MHz
- Typical $\Delta V_2 \sim 1$ km s$^{-1}$
- $0.1 < B < 0.8$ μT
- 1 alternative ΔV_2 12 km s$^{-1}$
- $B \sim 3.4$ μT
- 8 pairs in MERLIN data
- Mean B from all data:
 - magnitude 0.3 μT

Linear Polarization

- Seen in near side only
- Pol. vector angles χ
 - Mostly \perp outflow
 - Mean $\Delta \chi$ across clump 16°
- Interpretation:
 - σ components?
 - Implies $\chi \perp B_{\text{axis}}$
 - $B_{\text{axis}} \parallel$ biconical outflow
 - But χ changes in S
 - $B \sim 55^\circ$ to l.o.s. (Elitzur)?
 - $\chi \parallel B_{\text{axis}}$
 - Or π component?
 - (but $V \neq 0$)
 - Or partial conversion $P \rightarrow V$
H₂O Zeeman splitting

- S Per VLBA (Vlemming, Diamond & van Langevelde 02)
- \(B_{||} \approx 20 \mu T \) (70-200 mG) (model-dependent)
- Brightest H₂O masers @ \(R \approx 90 \) au (2.3 kpc) - take \(B \approx 15 \mu T \)

Faraday rotation & magnetic pressure

- Estimate electron density \(n_e \) from Faraday rotation
- \(\Delta \chi^2 = 0.15 B_{||} (T) n_e (m^3) r_{OH} \) (cloud size, au)
- \(|B_{OH}| \approx 0.3 \mu T \) (circ. pol.), \(r_{OH} \approx 9 \) au, \(\Delta \chi \) typically 16°
- \(n_e \approx 4 \times 10^7 \) m⁻³ (fractional ionisation \(\approx 10^{-6} \))
- Shell inner radius \(R_{OH} \approx 80 \) au, \(\Delta \chi \) (back-front) > 180°
- Far side depolarised by inhomogeneous \(n_e \), or Alfvén waves
- Consistent with OH depolarisation in R Crτ, W Hya, VX Sgr
- Thermal/magnetic pressure \(\beta = 10^{-8} \pi n k_B T / B^2 \)
- Typical region densities OH \(n \sim 10^{13} \) m⁻³, H₂O \(n \sim 10^{15} \) m⁻³
- \(\beta (H_2O) \sim 0.1 \) (7-1000 K) - strong mag. pressure
- \(\beta (OH) \sim 2 \) (T \~ 500 K) - significant but not dominant
- Pressure balance problem?
- Wind is supersonic...
- Dust-gas coupling better in magnetised clumps?

S Per magnetic field

- OH mainlines \(B \approx 0.3 \) µT at up to 140 au
- H₂O \(B \approx 15 \) µT at \(~ 90 \) au (brightest masers)
- Stretched dipole? \(B \propto R^2 \), expect 6 µT @ 140 au
 - 6 µT would split OH by \~ 18-30 km/s; aligns ambiguous
- Selection effect?
 - Only strongest/weakest splitting detectable in H₂O/OH?
- H₂O clumps \~ 50x denser than OH gas (Richards + 99)
 - Frozen-in \(B \propto n^{-0.3 \sim 0.5} \) (Mouschovias 87)
 - \(n \propto R^{-2 \sim 3} \) (no/strong acceleration) so frozen-in \(B \propto R^{-1 \sim 1.5} \)
 - \(B(H_2O) \) @ \(R \sim 30 \mu T \) where \(B(OH) \) would be \~ 4µT
- Extrapolate to 140 au (stretched dipole) \(B(OH) \approx 0.6 \) µT
 - This implies clump \(B \gg \) inter-clump \(B \) after dust forms

VX Sgr OH/H₂O axisymmetry

- OH 1612 polarization vectors
- Dipole magnetic field
 - Axis p.a. \~ 20°
 - S approaching
 - (Szymczak+)
- H₂O \~ spherical
 - Lower density bicone (\< 1)
 - Aligned about mag. axis
 - (Murakawa+)
VX Sgr OH/H₂O axisymmetry

- EVN OH mainlines
 - In H₂O shell
 - No obvious pattern

Wind evolution - bipolarity increases?

- NML Cyg
 - Inner shell elongated
 - Polarization vectors \(|| \)
 - Old 1612 MHz shell lower \(\epsilon \), tangential pol. vectors
 - Etoka & Diamond 04
 - Multiple elongated OH shells (Masheder, Diamond)
 - Multiple dust shells (Monnier et al.)

First spectral-line real-time VLBI

IRC+10420

- 10 M\(\odot \) RSG
 - heading for WR
- 1970's G0-F8
- Now A5 - 8500K!
 - (Klochkova et al.)
- No H₂O masers
- ?Fossil? molecular shell with OH masers
 - \(r \approx 7500 \) au @ 5kpc
 - 200x solar system
- OH Vexp 40 km/s
 - Shell shows 900 yrs of wind history
- OH 1612 spherical?
What is magnetic field origin? How does it act on the wind?

- Negligible stellar surface rotation
- Bipolarity in winds, magnetic field
- *Blackman+ 01*: $\alpha - \omega$ dynamo?
 - Differential rotation in layers, fast core, convection
 - Dipole field in wind channels dust grains?
- No degenerate core in RSG
- S Per B not consistently r^7/r^3
 - Neutral dust not affected in CSE (hotter than gas)
 - Dust charged? Or field acts more on plasma fraction?
 - Observations show dusty clumps accelerated not braked
- *Soaker & Zoabi 02*: α^2 turbulent dynamo
 - Not strong enough to influence whole wind
 - Could produce cool spots \Rightarrow enhance dust formation
 - Shock compression enhances radial magnetic field
 - Field frozen in to maser clumps (Hartquist & Dyson 97)?

The stellar surface

- α Ori lumpy, aspherical
- RSG clouds 5-10% R_\odot at birth
- Star spots?
- Chemical inhomogeneity?
- Convection cells?

*HST

α Ori Freytag+ 02

1-3 large starspots

Giant convection cells

Local magnetic field enhanced

$U_\parallel \sim \exp^t$*