A Phase-reference Study of the CSS Radio Source 3C 138 at 15GHz

Linlin Shang Shanghai Astronomical Observatory Chinese Academy of Sciences

Introduction

Observations

• Data reduction and results

• Sum m ary

VLBA Observation

Date: 20th August, 2001
Multi-frequency (2.3,5,8.6,15Ghz)
Phase-referenced observation at 15GHz only
Target source: 3C138
Calibrator: 0528+134

Target source: 3C 138

RA 05^h21^m9^s.886 Dec 16°38′22″
m_v=18.84, z=0.759
Compact steep spectrum (CSS) source Spectral index is 0.65
A complicated lobe-dominated source
15GHz single-dish flux density = 1.63Jy

Fig. 1 Large scale structure of 3C138 at 5GHz

• Map peak : 0.21Jy /beam

Calibrator: 0528+134

RA 05^h30^m56^s.4167 Dec 13°31′55″.149
z=2.06, m_v=20
Compact strong γ-ray quasar
Separation from 3C 138 is 3°.91

Data reduction--1

We first did a global fringe fitting to 3C138 data directly, then made a hybrid map from the detected visibility data.

Fig. 1 Hybrid map of 3C 138 at 15GHz

- Contours: 2mJy/beam × (-1, 1, 2, 4, 8, 16, 32)
- Map peak : 62.0mJy /beam

Data reduction--2

Phase-referenced technique
Map 0528+134 with high dynamic range
The clean components of 0528+134 were fed back to the phase self-calibration process to estimate the antenna-based residuals

 Apply the resulting solution to the visibility data of 3C 138

Fig. 2 VLBI map of 0528+134 at 15GHz

Fig. 3 Phase-referenced map of 3C 138 at 15GHz

Fig. 1 Hybrid map of 3C 138 at 15GHz

- Uniform weighting
- beam1.7 × 1.3(mas) at 0°
- Contours: 2mJy/beam × (-1, 1, 2, 4, 8, 16, 32)
- Map peak : 62.0mJy /beam

Fig. 4 uv-coverage

• (left) *uv*-coverage of Hybrid mapping

• (right) *uv*-coverage of Phase-reference mapping

Model-fitting to Hybrid map

Component	S/(Jy)	r (mas)	PA(°)	a/(mas
Α	0.027	0	0	0.27
B2	0.024	4.93	94.3	1.62
B1	0.067	6.36	81.9	0.44
С	0.011	9.51	99.6	1.47

Model-fitting to Phase-referenced map

Component	S/(Jy)	r(mas)	PA(°)	a/(mas
Α	0.031	0	0	0.11
B2	0.021	4.88	94.2	1.47
B1	0.065	6.33	88.8	0.53

Central core region

Spectrum

Summary

- The results at 15GHz are consistent with that at other frequencies.
- Future work
 - Multi-frequency Phase-reference observation
 - To confirm the position of the core
 - To probe the superluminal motion
 - To study frequency-dependence of the core position