Neutral hydrogen absorption at milliarcsecond resolutions:
The radio galaxy 3C 293

Rob Beswick
(Jodrell Bank Observatory)

Alison Peck (SMA)
Greg Taylor (NRAO)
Alan Pedlar (JBO)
Gabriele Giovannini (CNR)
Paddy Leahy (JBO)
Neal Jackson (JBO)

14th October 2004
Overview

1. Overview of the radio galaxy 3C293
2. Summary of observational results
 - Lower resolution VLA & MERLIN observations
 - HST/MERLIN observations of the jet
 - Combined VLBI, MERLIN & VLA observations of H\textsc{i} absorption & radio jet
Introduction & Observations

- **3C293**
 - Nearby Radio galaxy (D=180Mpc; implies 1″ = 815pc)
 - Significant signs of merger (dust lanes, a nearby companion galaxy)
 - Significant gas content (CO, Evans et al 1999 & HI)
 - Fast gas outflows (Morganti et al 2003)
 - Large scale radio jets/lobes
 - Steep spectrum core

- **Observations**
 - Radio: 1.4 GHz VLA, MERLIN & Global VLBI, 5GHz MERLIN continuum (JET & HI absorption)
 - Optical/IR: HST, NICMOS. (IR Jet)
Large to intermediate scale jets

- VLA B-config 1.35GHz
- Double ~100kpc scale jet
- Bright central core region

- Inner jet PA ~90 degrees
 (Significant change compared to large scale jet)

(Beswick et al 2004)
The inner jet

- At sub-arcsec angular resolutions the inner central few kiloparsec radio jet breaks into multiple components along an east-west orientation.
 - Steeply inverted spectrum of core
 - $\alpha \sim -1$ (Akujor et al 1996)
 - Fitted core size <17pc
The inner jet

- At sub-arcsec angular resolutions the inner central few kiloparsec radio jet breaks into multiple components along an east-west orientation.
 - Steeply inverted spectrum of core
 - $\alpha \sim -1$ (Akujor et al 1996)
 - Fitted core size <17pc
Infrared jet

- HST imaging of the centre of 3C293 at 1.6μm reveals a string of knots of emission coincident with the knots observed in the radio emission.
Infrared jet
Infrared Jet

- Approaching eastern
- Shows weak optical/IR jet emission coincident with the inner radio jet components
The neutral ISM

- 3C293 is a very distorted and dust rich radio galaxy
- Extensive ~NE-SW dust lanes
HI absorption

- Very broad & deep HI absorption seen in sensitive WSRT observations.
- Outflows Jet-ISM interactions…. Toward the inner eastern jet??

(Morganti et al 2003)
HI Absorption

- Extensive MERLIN HI absorption
- Eastern side: Narrow absorption
- Western side: Broad(er) absorption
- Opacities $\sim 0.01 - 0.2$
- $N_H \sim 10^{21}$ atoms$^{-1}$ cm$^{-2}$
The dust distribution is strongly correlated with areas of increased HI opacity.

- Dust and Neutral gas spatially related
- In particular the narrow HI absorption traces the dust lanes
HI distribution

Areas of increase HI

HI Opacity
Narrow absorption

- At mas angular resolution the velocity structure of the narrow component is resolved against the eastern jet.
 - Small velocity gradient
 - Gas and dust rotating in the out reaches of the source.
 - VG ~ 50kms\(^{-1}\)arcsec\(^{-1}\)
Position-Velocity

• On ~200mas angular scales. Velocity gradient centred upon the core(?)
• Or two distinct velocity structures (??)

However stepping up the resolution the absorption breaks up many composite components.
• Lack of illuminating background continuum.
Position-Velocity

- On ~200 mas angular scales. Velocity gradient centred upon the core (?)
- Or two distinct velocity structures (???)

However stepping up the resolution the absorption breaks up many composite components.
- Lack of illuminating background continuum.
Conclusions

• 3C293 is both an unusual and enigmatic radio galaxy.
• Steeply inverted radio core
• Radio/IR jet
 – Large PA shifts in the radio jet alignment
 • Jet interaction with the ISM and/or multiple outbursts of activity
 (interaction induced??)
• Extensive HI absorption
 – Deep nuclear absorption ($N_H \sim 10^{21}$ atoms cm$^{-2}$)
 – Narrow absorption is strongly correlated with the dust distribution
 – Broad absorption toward the core and western jet
 • Possible velocity gradient in lower resolution data. Implies central mass $< 10^9$ solar masses ($r<$ few hundred parsecs)
 • At mas resolution gradient breaks up – can be interpreted as independent gas structures.
 – Do not have sensitivity or bandwidth to confirm location of broad HI outflows