Improving VLBI Station Performance

Ulrich Schreiber

Federal Agency for Cartography and Geodesy Geodetic Observatory Wettzell

Higher Bandwidth and a vastly increased number of observed radio sources are basic elements of the roadmap into the future of VLBI. The new TWIN telescope system in Wettzell is in agreement with these basic goals. Systematic intra-technique biases are of equally high importance. Modern instrumentation of quantum optics and recent progress in high resolution event timing provide new tools for studying system behavior and the improvement of system stability. Compensated optical fibers may qualify as suitable tools for one-way system delay reduction. This talk will introduce current activities for system stabilization, inter- and intra- technique bias reductions in Wettzell.

WLRS Wettzell

campaign 09-23-2009:

Method	East	North	Up
geodetic 3D adjustment (PANDA)	316.92439	180.04240	616.51425
sphere adjustment (MatLab LSGE-bib.)	316.92438	180.04237	616.51454
circle adjustment	316.92438	180.04250	616.51454
max. difference	0.01 mm	0.13 mm	0.29 mm

campaign 09-01-2009:

Method	East	North	Up
geodetic 3D adjustment	316.9253	180.0426	616.5134
Difference to above	0.9 mm	0.1 mm	0.85 mm

Laser System Reference Point

Mähler (2009), Klügel (2010)

RTW Wettzell

Method	East	North	Up
2D adjustment + height (NetzCG)	269.71713	187.69011	622.46484
3D adjustment (JAG3D)	269.71715	187.69011	622.46482
circle adjustment	269.71720	187.69008	622.46502
max. difference	0.07 mm	0.03 mm	0.2 mm

Laser tracker data:

Method	East	North	Up
3D adjustment (JAG3D)	269.71739	187.69056	622.46506
Difference to tachymeter data	0.24 mm	0.45 mm	0.24 mm

Lösler (2008), Klügel (2010)

Survey Errors are obtained consistently small

Conclusion from a series of surveys

- The space technique reference points show no significant displacements w.r.t. the local network
- Good repeatability, also when using different instruments -> small systematic errors
- The accuracy of the local ties in Wettzell are in the order of 1-2 mm
- We certainly need a yet closer look at intra technique biases

Laser	satellite signature, signal strength, asymmetry between satellite ranges and calibration
VLBI	system delay, phase-cal

Instrumental biases (short term): cable delays in VLBI

Present Status:

- Inaccurate, incomplete or missing local ties at many fundamental sites
- No use of co-location of instruments onboard satellites for ITRF
- Considerable technique-specific biases of the individual techniques

Prospect:

- Wettzell: 3 VLBI, 2 SLR telescopes and 5 GNSS antennas; common timing for all instruments
- Dedicated satellite missions for co-location of GNSS, SLR, VLBI (and DORIS) presently considered

Instrumental biases (seasonal): height changes of VLBI telescope

Measurement device - Oscilloscope Tektronix - DPO 7254 - 2.5GHz / 40Gs/s

<u>Preliminary</u> experiment at CTU: J. Kodet

- light and RF not identical domain (cal.)
- SPAD not bad, more Bandwith needed
- Timing System needs consolidation (after all we are after 100 ps delay...)

Figure 2: Edge spectrum.

C 3.046 1.0GHz

-23.3dB/@2.2GHz

2.2GHz

1.88GHz

531.9pt

€10 / 20.0mV

5.0ms 20.0G5/s

115 392 acos

April 21, 2011

Average:64

50.0ps/pt

RL:1.0k

10:10:10

Timing System Wettzell: Current State

Comparison over 5 years

UTC - UTC [IFAG]

Known Issues in T&F

- PPS Pulse not sharp (bandwidth limited RG58)
- Cable delays sort of known (insufficient)
- Reference Frequency is low (5 MHz)
- 1pps jitters as ground potentials floats between systems
- simple Cable distribution (no 2-way-compensation)
- insufficient for the definition of space time (ART) on observatory

Practical Application

Measurement returns Offset between A and B It also returns the variation in the length of the cable

Practical Application

It also returns the variation in the length of the cable

Clock Comparison inside a building

Offset between the two separate timescales

Clock Comparison between buildings 100 m apart

Goals for new Timing System

- Optical Frequency Distribution (Fiber)
- continuous precise 2-way-delay compensation
- Reference Frequency high (100 MHz)
- exact reference $(\pm 1 \text{ ns})$ relative to external source (PTB)
- T & F generated from same signal (OFC technology)
- Definition of Space Time (in anticipation of optical clocks)

General Idea

-> per 2-way comparison space time definition

Application: Time Transfer

- optical (sub-)picosecond link between event timer UTC_{Wtz}
- optical time transfer per laser link
- optical frequency (time) transfer by fiber link PTB

Application: Frequency Stab.

- Application of optical pulses for <u>system delay</u> in VLBI
- 100 MHZ frequency ref. not 5 MHz for mixer
- direct conversion of 2 + 8 GHz from OFC?
- Inter-technique calibration SLR VLBI

More OFC-Technique options for VLBI...?

Ring Laser Cavity Q > 10^{12}

Schawlow – Townes Limit ≈ 300 µHz @ 474 THz

RLG as a flywheel for freq. stability

OFC as gearbox between optical and RF domain

Potential:

- New arena for intra- and inter-technique biases
- Common clock for VLBI (via PTB in the longterm?)
- New challenges and prospects for Time Transfer
- What is in with better space clocks with GNSS?
- <u>Time a geodetic observable</u> rather than a adjustment parameter?

Photo: U. Schreiber

Wettzell: 15.9.2011