A New VLBI Intensive Series Using the Mauna Kea and Pie Town Stations of the VLBA

Dave Boboltz (USNO), Walter Brisken (NRAO), K. Kingham, K. Johnston, D. Hall, N. Geiger, A. Fey, R. Gaume (USNO)

Outline

- Background
- UT1 tests with the VLBA
- VLBA MK-PT Intensive series
- Fine tuning the sessions
- Future plans

The USNO Astrometric/Geodetic Mission

- USNO is the IERS Rapid Service/Prediction Center for Earth Orientation and co-chairs the ICRS Product Center.
- USNO has several functions within the IVS.
 - Correlator Operations Center.
 - VLBI Data Analysis Center.
 - Special Analysis Center for Source Structure.
- USNO provides several levels of data products to the international community and to other U.S. Federal agencies.
 - Daily EOP (rapids).
 - Weekly EOP updates (Bulletin A).
 - Long-term (periodic EOP, TRF, CRF solutions).

How Can UT1 Product be Improved?

 Reducing data latency from 2.25 days to 6 hours results in: Factor of 5 reduction in UT1-UTC prediction uncertainty 40% reduction UT1-UTC prediction errors 7 days out.

Astrometry/Geodesy with the VLBA

- VLBA already heavily used for astrometric CRF observations.
- RDV experiments.
 - Six 24-hr sessions per year.
 - 1997 present.
 - RDV 91 (Feb. 2012)
- High-Frequency Reference Frame
 - K (24 GHz) / Q (43 GHz) bands
 - Twelve 24-hr VLBA sessions
 - 2002 to 2009
- USNO interest in using VLBA for geodesy.

UT1-UTC Testing With the VLBA

- NRAO and USNO began a series of "Pseudo" Intensives to measure UT1-UTC.
- Feb. 2009 Mar. 2010
- TC015
 - 5 stations (HN, LA, MK, PT, SC)
 - 13 sessions
 - Optimized for MK-SC baseline
- TB014
 - 3 stations (MK, LA, PT)
 - 5 sessions
 - Optimized for MK-PT baseline

Results from Pseudo-Intensive Experiments

- Differences between VLBA UT1-UTC and IERS C04 as a function of baseline length
- Longer baselines more tightly distributed
- Despite shorter baselines, VLBA measurements meet operational requirements for UT1-UTC

Why the MK-PT Baseline for UT1-UTC?

- Mauna Kea, Hawaii
 - Provides long east-west baseline necessary for UT1.
 - Network infrastructure mostly there except for last mile.
 - Redundancy with Kokee Park geodetic VLBI station.
- Pie Town, New Mexico
 - Network infrastructure already in place (VLA-PT).
 - Cost sharing for some legs between station and 10 Gb/s Internet2.
 - Proximity to NRAO-AOC.

Agreement with the NRAO

- Goal: Perform daily UT1-UTC measurements using the VLBA.
- Mauna Kea, HI Pie Town, NM
 - Baseline: 4795 km
- USNO-NSF-NRAO MOU signed.
 - USNO to provide funding for daily "Intensive" observations.
 - Continued VLBA RDV participation.
- Intensives require high-speed network connections to both stations for e-VLBI.

Installation of MK-PT Fiber Links

- Pie Town link (1 Gbps).
 - Available March 2011.
 - Multiple test transfers of VLBI data
 - 100 400 Mb/s to USNO.
- Mauna Kea link (1 Gbps).
 - Contract with University of Hawaii.
 - Installed and available July 2011.
 - Multiple test transfers of VLBI data
 - 100 400 Mb/s to USNO.

VLBA MK-PT Observations

- Using new RDBE system at MK and PT stations.
- Dual S/X Band
 - 32 MHz/channel
 - 6 Contiguous S-band channels: 2156 2348 MHz
 - 10 X-band channels: 8430 8908 MHz
- 2 Gb/s data rate
- 45 minutes / experiment, 30-35 scans
- 12 seconds scan lengths
 - Helps limit data to be transferred (~100 GB/station).
 - Source lists from USNO, ICRF2 defining sources.
- Separate USNO Mark5C recorders.

VLBA MK-PT Data Path

- Schedule generated by NRAO: SCHED
 - Gives NRAO flexibility to break into astronomy obs.
 - Automated e-mail notification to exploder: <u>ut1@nrao.edu</u>
- Observations occur.
 - Notification (observing log) to exploder.
- Data copied from Mark5C module to Mark5C internal disk.
- Data e-transferred from stations to USNO.
 - ~100GB per station transferred via TSUNAMI
 - Data written to 48 TB Storage Area Network (SAN) at USNO.
- Data written from SAN to Mark5 modules at USNO.
- Data correlated on USNO Software Correlator.
- Data converted from DiFX format to FITS and MARK4 formats.
- Data post-processed and geodetic databases created.

Correlation on USNO DiFX Software Correlator

- Heterogeneous cluster.
 - 4 nodes (workstations)
 - 28 cores
 - 2 Mark5B+ units
- 1 Gb/s ethernet switch.
- Red Hat Enterprise Linux operating system.
 - Mixed 32 and 64-bit operating system
- DiFX package installed.
- Procurement of full software correlator cluster underway.

VLBA MK-PT INT4 Sessions

- Designated IVS Intensive4 (INT4)
 - IVS Session: Nyyddd
 - Databases: yymmmddXV_V001
- Some growing pains with new series.
- Fringes/Experiments
 - Sept. 1/3
 - Oct. 4/11
 - Nov. 5/13
 - Dec. 5/13
 - Jan. 2012 16/16
 - Feb. 2012 21/24
 - Mar. 2012 3/3 so far

400 500 800 Channel (32.000 MHz/990h

Post-processing and Analysis

- Geodetic post-processing path exercised through completion.
 - Nov. 2011 5 sessions
 - Dec. 2011 5 sessions
 - Jan. 2012 16 sessions
- Mark4 style databases produced with DiFX2Mark4.
- Fringe-fitting and calibration within HOPS.
- Geodetic database creation and distribution with DBEDIT.
- Database analysis with SOLVE.
- Global solution and UT1–UTC time series generation with SOLVE.

UT1–UTC Results: Comparison IERS C04

- Oct. 2011 Jan. 31, 2012
- IVS 24-hr sessions (red)
- KkWz Intensives (green)
 - wrms = 13.3 μ sec
- MkPt Intensives (blue)
 - wrms = 29.5 μ sec

UT1–UTC Results: Comparison with Bulletin A

- Oct. 2011 Jan. 31, 2012
- KkWz Intensives (blue)
 - $\text{ rms} = 19.2 \ \mu \text{sec}$
- MkPt Intensives (green)
 - $\text{ rms} = 45.6 \ \mu \text{sec}$

Fine Tuning: S-Band Tests

- USNO working with NRAO to optimize frequency bands for MK-PT Intensives.
- Started with 6 S-band channels and 10 X-band.
- Two S-band channels in satellite radio band 2320-2345 MHz.
 - These channels dropped.
 - Replaced with X-band channels.
- Current setup: 4 S-band and 12 X-band.
- Some RFI still in S-band channel 1.
- 15-25 observations at S-band make it through fringing/postprocessing typically.
- Prompted tests to map the entire S-band frequency range.

S-Band Test: 1860–2372 MHz

IVS GM2012, Madrid, Spain

S-Band Test: 1860–2372 MHz

S-Band Test: 2060–2572 MHz

S-Band Test: 2060–2572 MHz

Future Plans

- Get INT4 data into IVS system.
- Move MK-PT INT4 sessions from tests to operations.
- Automate e-transfers of the data.
- Streamline post-processing.
- Scheduling/Frequency optimization.
- Move to file-based correlation.
 - Eliminate USNO data write to Mark5 module.
- New software correlator at USNO.
 - 30 Node (360 core) cluster running DiFX.
 - Capable of correlating 15 stations at ~2 Gb/s.

