VLBI 2010 using the RDBE and Mark5C

Chet Ruszczyk
7th IVS General Meeting, Madrid, Spain
March 5-9 2012

MIT Haystack Observatory, Westford, MA
VLBI2010 System
RDBE

- Roach Digital BackEnd (RDBE)
- Joint development project Haystack / NRAO
- Goal
 - Standard hardware configuration that can be ordered
 • RDBE-H
 - Standard software interface / command set
 - Common VHDL framework to accommodate
 • multitude of signal processing chains
- Components
 - Hardware
 - FPGA personalities
 - Server software
RDBE-H Block Diagram
(common hardware for NRAO and Haystack)
RDBE-H Firmware

• Personality types (FPGA code)
 – Polyphase filter bank (pfbg) Version 1.4 (Haystack)
 • Input is two 512MHz IFs
 • Output
 – 16 of 32 possible 32-MHz channels on one CX4
 – Mark5B format
 • Synchronous detection from a noise diode for system temperature measurement
• Monitoring
 – Tsys
 – 1pps
RDBE-H Firmware

- Digital down converter (ddc) (NRAO)
 - Input is two 512MHz IFs
 - Output anticipated to be eight tunable channels (two working now)
 - Bandwidths ranges down in binary steps from 64 MHz to 62.5kHz
 - Output is 5008-byte packets in Mark5B format
Mark5C

- Joint development effort of MIT Haystack, NRAO and Conduant Corporation
- Designed to meet the Mark5C specification
 - MIT Haystack Memo #57
 - VLBA Sensitivity Upgrade memo #12
- 4 Gbps recording capability
- Three components
 - Hardware
 - Software development kit (SDK)
 - Application
Mark5C Hardware

• Amazon streamstor controller card
 – Controller card (Mark5B+)

• 10Gbps Ethernet daughter board
 – CX4 physical connector
 – Maximum ingress rate is 4Gbps
 – Receive only device
 • No transmit capability designed into initial release
Mark5C Software

• SDK 9.X
 – Standard function calls
 • To configure, control and monitor
 – Controller Card
 – 10G daughter board
 – Disk modules
 – Supports 32 bit Linux kernels
 – Supports > 1TB disk drives
 – Using SDK 9.1
Mark5C Software

• Applications
 – drs
 • VLBI Data Recording Service
 • Write capabilities
 – 2Gbps bank mode
 • Version 0.9.4
 – fuseMk5
 • Read capability
 – Numerous utilities
 • Updated utilities SSErase, SSReset
 • Command line interface and graphical user interface
VLBI2010 Upgrade
RDBE-Q

• Hardware
 – 2nd iADC card
 • Four 512MHz IFs
 – Modification to ALC to handle 4 IFs
 – Utilize 2 10G CX4 output ports
 • 8 Gbps aggregate
 – 4 Gbps / Ethernet port
RDBE Firmware

• Version 2.0
 – Utilize the polyphase filter bank design
 • Based on version 1.4
 • Process 4 IFs
 – Software settable quantization
 – Output Data
 • Sixty four 32MHz channels
 • Data will be complex
 • VLBI Data Interchange Format (VDIF)
RDBE Firmware

– Output data (cont)
 • 32 channels / thread ID / 10G CX4 port
 • 8884 bytes of VDIF data
– Utilized the VLBI Transport Protocol (VTP)
 • Currently under investigation, but:
 – FPGA resource constraints
 • Version 1.4 utilized 65% for 2 IF design
Mark5C Application

• drs version 0.9.5
 – Adds 4Gbps write capability support
 • Dual bank mode
 – disk2file capability
 • fuseMk5 not required to access data on the disk

• drs version 1.0
 – VDIF
 • Limited timing checking of scans
Contributors

• MIT Haystack
 – Chris Beaudoin, Geoff Crew, Shep Doleman,
 *Alan Hinton, Russ McWhirter, Arthur Niell,
 Alan Whitney

• NRAO
 – Mattias Bark, Hichem Ben Frej, Walter
 Brisken, Steve Durand, Paula Metzner, Matt
 Luce, John Romney

• JIVE
 – Harro Verkouter
Thank you / Questions?