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Nutation measured by VLBI
Noto station
From http://www.noto.ira.inaf.it/
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Recent Advances in observation
• Network

– More stations

– More extended networks

– More sources observed in each 
session

– Upcoming VLBI 2010

• Reference frames

– ITRF 20xx

– ICRF2 (Ma et al. 2009)

• Stronger set of defining sources

• Better coverage of both 
hemispheres

• Improved stability of the axes (10 
mas)
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Nutation Series

• Longer time series
– Better adjustment of long-period terms (e.g., 18.6-yr)

– Improvement of the formal error

– Can choose to drop data before 1995
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Some Challenges for the free nutations
• The amplitudes can only be observed due to the poor knowledge of 

their excitation! Only FCN free mode observed. (but resonance)

• Explain the variations of the FCN amplitude/phase

• Detect a signal related to the FICN (see poster of Lambert et al.)

The FCN
The nutation after removal of the FCN 
and main tidal terms
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Earth interior model

Earth response

rigid Earth nutation

Non-rigid Earth 
nutation model

oceanic/atmospheric 
corrections

comparison with 
observation

Forced Nutations



rotation axis of the mantle
rotation axis of the core
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rotation axis of the inner core
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Precession,
nutations
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Rigid Earth nutation theory



transfer function

PFCN

PFCN

PFCN
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rigid  Earth nutations

non-rigid Earth nutations

1. calculate rigid 
nutations (precision 
better than observa-
tion precision) from 
celestial mechanics

2. Calculate response of 
planet (transfer 
function in frequency 
domain) from 
geophysics

Earth: amplifications up 
to 30 mas
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Observed magnetic field Observed magnetic field 
and its secular variationsand its secular variations

flow at CMBflow at CMB
 velocity field in the corevelocity field in the core

 flow as rigid rotation of coaxial cylinders along
Earth rotation axis 
(Taylor cylinders) : 

 torsional wave linking all the cylinders (quasi-
Taylor state) 
Braginsky 1970, Jault et al. 1988
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Earth rotation changes due to the core; 
core-mantle coupling

 coupling mechanisms:
 topographic torque
 gravitational torque
 viscous torque
 electromagnetic torque



Core Angular Momentum exchange 
due to topographic torque at CMB

 pressure at CMB
 core-mantle boundary topography (<2km)
Difficult, challenging, controversial
but cannot be ruled out

core
mantle

e.g. Hide 1977 ROB
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• Why only some of the topography coefficients are 
important?

• Related to resonance with inertial waves
[when perturbing a rotating fluid, the particle motion is 
characterized by a low-frequency oscillation called 
inertial wave] 

• Related to the geometry of the core and of the 
topography
Analytical approach   work with Mihaela Puica
Numerical approach   work with Quentin Geerinckx

Topographic coupling
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Research objective and strategy
• Aim at obtaining torque and associated effects on nutation
• Strategy: 

– Establish the motion equations and boundary conditions 
in the fluid;

– Compute analytically/numerically the solutions;
– Obtain the dynamic pressure as a function of the 

physical parameters;
– Determine the topographic torque.

• Assessment: Comparison with Wu and Wahr (1997) who 
used a numerical technique

1
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Differential equations and 
boundary conditions

• Linearized Navier-Stokes equation:

• Boundary conditions:
velocity pressure gravitational force (equilibrium+mass redistribution+tides)

ROB

Rotation forcing

Coriolis

Coriolis



Process for obtaining the 
solutions and the torque
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Final expressions
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Solutions
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Electromagnetic torque + 
viscous torque: dissipative

• Outer core electrical conductivity: known from 
laboratory experiments: 5 105 S m-1 (Stacey & 
Anderson 2001).

• Lowermost mantle electrical conductivity (∼200 m 
layer at the base of the mantle): unknown but has to 
be lower than that of the core. 

sm= 10 S m-1, 5 104 S m-1, 5 105 S m-1

• RMS of the radial magnetic field at the CMB: from 
surface magnetic field measurements: > 0.3 mT.

• Viscosity of the outer core fluid close to the CMB:
– molecular viscosity: ∼10-6 m2 s-1 (laboratory experiments 

and ab initio computations).
– eddy viscosity: < 10-4 m2 s-1 (Buffett & Christensen 2007).
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Constraints on the physical 
properties of the CMB

Coupling model 
used: Buffet et al. 
2002 for EM and 
Mathews & Guo
2005 for 
viscomagnetic

From Koot et al. 
2010
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Constraints on the physical 
properties of the CMB

• For EM coupling only: RMS of the radial 
magnetic field at the CMB: 0.7 mT or higher.

• Viscomagnetic coupling:
– Allows for lower values of the magnetic field 

at the CMB.
– Allows for lower values of mantle conductivity.
– Outer core viscosity: ∼10-2 m2 s-1.

➡ Very high value, unlikely to be realistic.

ROB



Constraints on the physical 
properties of the CMB

• For realistic values of the outer core viscosity, the 
viscous coupling is negligible.

• Magnetic coupling:
– Lowermost mantle very high conductivity: 5 105 Sm-1 

(conductivity of iron at core condition) and RMS of 
the radial magnetic field at the CMB: 0.7 mT.

– Or more RMS...
• Magnetic field surface observations (degrees <13): 

RMS ~0.3 mT
• But smaller scales unknown.
• Nutation suggest that most of the energy of the 

magnetic field at the CMB comes from these! ROB



Constraints on the physical 
properties of the ICB

Visco-magnetic coupling 
at the ICB
• Electrical conductivity 
of the outer and inner 
cores: known from 
laboratory experiments.
• Unknown parameters:
- Magnetic field at the 

ICB
- Viscosity of the 

outer core at the ICB

From Koot et al. 2010
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Constraints on the physical 
properties of the ICB

• No solution for a purely EM coupling.
• Outer core viscosity: ∼ 10 m2 s-1: unrealistic!
• RMS of the mag. field at the ICB: 6-7 mT.

Another mechanism is required to explain the 
observed damping of the FICN mode !

Inner core viscous deformation?
Koot & Dumberry EPSL (2011)

– For Inner core viscosity: ∼2-7 1014 Pa s.
– RMS of the mag. field at the ICB: 4.5 - 6.5 mT
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Modelling the Earth's rotation
• Interior Realistic Model Rotation
• Current model IAU2000 (Mathews et al. 2002)

– interior properties summarised in a set of parameters
– poorly known parameters are estimated, improving

knowledge of the Earth's interior (Koot et al. 2010)
– other parameters are computed for a spherical Earth

• Former model IAU1980 (Wahr 1981)
– full consideration of the polar flattening
– disregarded non-hydrostaticity which affects the FCN 

period (Gwinn et al. 1986), eventually discarded
– since then refined (e.g. Huang et al. 2011), now working 

on non-hydrostaticity and associated triaxiality
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Non-hydrostaticity & Triaxiality
• Spectral analysis of the 

equations of continuum 
mechanics

• Rotation perturbations 
modelled as infinitesimal 
toroidal degree-1
displacement

• ODE submatrix:
– spherical, non-rotating
– biaxial, rotating
– triaxial, rotating, 

convecting

ROB
Work of Antony Trinh



Angular momentum exchange

ROB

Gravitational
torque

Topographic 
pressure torque

Friction
torque

Interaction between solid Earth and 
geophysical fluids



Earth/atmosphere/ocean interactions

Friction

Friction
Friction
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Nutation residuals: observation-model
(VLBI-IAU2000A)
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The nutation after removal of the 
FCN and main tidal terms
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Nutation
model

Observation
data

Models

Laboratory
experiments

Observation

ResidualsPredictions

Celestial
mechanics
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Better understanding of the Earth interior!


