Recent advances in applications of geodetic VLBI to geophysics

Véronique Dehant, Sébastien Lambert, Laurence Koot, Antony Trinh, Marta Folgueira Royal Observatory of Belgium, Paris Observatory, Complutense University of Madrid

Nutation measured by VLBI

Noto station From http://www.noto.ira.inaf.it/

.... 181.00 . .

* ***** ****

ROB

Recent Advances in observation

- Network
 - More stations
 - More extended networks
 - More sources observed in each session
 - Upcoming VLBI 2010
- Reference frames
 - ITRF 20xx
 - ICRF2 (Ma et al. 2009)
 - Stronger set of defining sources
 - Better coverage of both
 hemispheres
 - Improved stability of the axes (10 μas)

Nutation Series

- Longer time series
 - Better adjustment of long-period terms (e.g., 18.6-yr)
 - Improvement of the formal error
 - Can choose to drop data before 1995

Some Challenges for the free nutations

- The amplitudes can only be observed due to the poor knowledge of their excitation! Only FCN free mode observed. (but resonance)
- Explain the variations of the FCN amplitude/phase

The FCN

• Detect a signal related to the FICN (see poster of Lambert et al.)

The nutation after removal of the FCN and main tidal terms

rigid Earth nutation

Forced Nutations

structure of the Earth's interior for its response

normal modes rotation axis of the mantle rotation axis of the core rotation axis of the inner core nerasic manual nerasic manual nerasic manual nerasic manual

ROE

Rigid Earth nutation theory

- calculate rigid nutations (precision better than observation precision) from celestial mechanics
- 2. Calculate response of planet (transfer function in frequency domain) from geophysics

Earth: **amplifications** up to 30 mas

Observed magnetic field and its secular variations →flow at CMB → velocity field in the core

flow as rigid rotation of coaxial cylinders along

Earth rotation axis

(Taylor cylinders) :

Taylor state)
 Braginsky 1970, Jault et al. 1988

Earth rotation changes due to the core; core-mantle coupling

 \rightarrow coupling mechanisms:

- topographic torque
- gravitational torque
- viscous torque
- electromagnetic torque

Core Angular Momentum exchange due to **topographic** torque at CMB

pressure at CMB

Core-mantle boundary topography (<2km)</p>
Difficult, challenging, controversial
but cannot be ruled out

e.g. Hide 1977

Topographic coupling

- Why only some of the topography coefficients are important?
- Related to resonance with inertial waves
 [when perturbing a rotating fluid, the particle motion is characterized by a low-frequency oscillation called inertial wave]
- Related to the geometry of the core and of the topography

Analytical approach work with Mihaela Puica
Numerical approach work with Quentin Geerinckx

Research objective and strategy

- Aim at obtaining torque and associated effects on nutation
- Strategy:
 - Establish the motion equations and boundary conditions in the fluid;
 - Compute analytically/numerically the solutions;
 - Obtain the dynamic pressure as a function of the physical parameters;
 - Determine the topographic torque.
- Assessment: Comparison with Wu and Wahr (1997) who used a numerical technique

Differential equations and boundary conditions

Linearized Navier-Stokes equation:

The oscillations of a rotating fluid where the restoring force involves Coriolis force are inertial waves (frequency lower than 20)

$$\begin{cases} i\sigma_{m}\vec{q} + 2\vec{z}\times\vec{q} + \nabla\Phi = 0\\ \text{Coriolis}\\ \nabla\cdot\vec{q} = 0\\ \vec{n}\cdot\vec{q} + \Omega^{-1}L^{-1}\vec{n}\cdot\vec{v} = 0 \end{cases} \text{ where } \Phi = \frac{\phi}{\Omega^{2}L^{2}} \text{ and } \phi = \frac{p}{\rho_{f}} + \chi.$$

Process for obtaining the solutions and the torque

•
$$\vec{q}$$
 as a function of $\nabla \Phi$: $\left(\vec{q}\right) = \frac{-i\sigma_m}{4-\sigma_m^2} \left[\nabla \Phi - \frac{2}{i\sigma_m}\vec{\hat{z}} \times \nabla \Phi - \frac{4}{\sigma_m^2}(\vec{\hat{z}} \cdot \nabla \Phi)\vec{\hat{z}}\right]$
• Expression for Φ : $\left(\Phi\right) = \sum (a_l^k) P_{lk} \left(\frac{\sigma_m}{2}\right) Y_l^k(\vartheta, \lambda).$

l=1

• Expression of \vec{v} in function of χ :

$$v_1 + iv_2 = -\frac{i}{\Omega} \left(\frac{\partial \chi}{\partial x} + i \frac{\partial \chi}{\partial y} \right)$$
$$v_3 = \frac{i}{\Omega} \frac{d\chi}{dz}$$

Final expressions

• Equation for obtaining the analytical expressions of a_l^k in function of the topography at the CMB $\{ \mathcal{E}_n^m \}$ $\sin^2\vartheta \sum_{l,k} Y_l^k \left[k P_{lk} \left(\frac{\sigma_m}{2} \right) - \left(1 - \frac{\sigma_m^2}{4} \right) P_{lk}' \left(\frac{\sigma_m}{2} \right) \right] a_l^k$ $+ \sin^2 \vartheta \left[2 \sqrt{\frac{2\pi}{15}} \left(1 + 3 \sum_{m=0}^{\infty} \epsilon_n^m Y_n^m \right) \left(\frac{(\sigma_m^2 + \sigma_m - 2)}{2\sigma_m} Y_2^1 m_f^- + \frac{(-\sigma_m^2 + \sigma_m + 2)}{2\sigma_m} Y_2^{-1} m_f^+ \right) \right]$ $+ \sqrt{\frac{2\pi}{3}} \frac{(4 - (\sigma_m^2)')}{2\sigma_m} \Psi \left(-Y_1^1 m_f^- + Y_1^{-1} m_f^+ \right) + \cos^2 \vartheta \sqrt{\frac{2\pi}{3}} \Psi \left(-\frac{(\sigma_m^+ + 2)}{2} Y_1^1 m_f^- + \frac{(\sigma_m^- + 2)}{2} Y_1^{-1} m_f^+ \right)$ + $\sqrt{\frac{2\pi}{15}} \sum_{m=1}^{\infty} m e_n^m Y_n^m \left(\frac{(\sigma_m + 2)}{2} Y_2^1 m_f^- + \frac{(\sigma_m + 2)}{2} Y_2^{-1} m_f^+ \right) = 0$

$$Y_{l}^{k} \equiv Y_{l}^{k}(\vartheta, \lambda), \ m_{f}^{+} = m_{1}^{f} + im_{2}^{f}, \ m_{f}^{-} = m_{1}^{f} - im_{2}^{f}, \ P_{lk}'(x) = \frac{dP_{lk}(x)}{dx} \text{ and } \\ \Psi = \sum_{n=1}^{\infty} \widehat{c_{n}^{n}} \left[\frac{n\sqrt{n-m+1}\sqrt{n+m+1}}{\sqrt{2n+1}\sqrt{2n+1}} Y_{n+1}^{m} - \frac{(n+1)\sqrt{n-m}\sqrt{n+m}}{\sqrt{2n+1}\sqrt{2n-1}} Y_{n-1}^{m} \right] \qquad \begin{array}{c} \star \star \star \star \star \\ \star \star \star \star \\ \text{ROB} \end{array}$$

Solutions

- Expressions for a_l^k involving $\mathcal{E}_n^m Y_n^m Y_2^0 Y_2^1$
- No radius dependence except for a global scaling
- This yield coupling such as

$$Y_{n\pm 4}^{m\pm 1}$$

- This thus involves particular harmonics
- Also the solutions contain polynomial in the frequency $\sigma.$

Electromagnetic torque + viscous torque: dissipative • Outer core electrical conductivity: known from

- Outer core electrical conductivity: known from laboratory experiments: 5 10⁵ S m⁻¹ (Stacey & Anderson 2001).
- Lowermost mantle electrical conductivity (~200 m layer at the base of the mantle): unknown but has to be lower than that of the core.

 σ_{m} = 10 S m⁻¹, 5 10⁴ S m⁻¹, 5 10⁵ S m⁻¹

- RMS of the radial magnetic field at the CMB: from surface magnetic field measurements: > 0.3 mT.
- Viscosity of the outer core fluid close to the CMB:
 - molecular viscosity: ~10⁻⁶ m² s⁻¹ (laboratory experiments and ab initio computations).
 - eddy viscosity: < 10^{-4} m² s⁻¹ (Buffett & Christensen 2007).

Constraints on the physical properties of the CMB

Viscosity and Radial Uniform Magnetic Field at the CMB

Coupling model used: Buffet et al. 2002 for EM and Mathews & Guo 2005 for viscomagnetic

From Koot et al. 2010

Constraints on the physical properties of the CMB

- For EM coupling only: RMS of the radial magnetic field at the CMB: 0.7 mT or higher.
- Viscomagnetic coupling:
 - Allows for lower values of the magnetic field at the CMB.
- Allows for lower values of mantle conductivity.
 - Outer core viscosity: $\sim 10^{-2}$ m² s⁻¹.
 - → Very high value, unlikely to be realistic.

Constraints on the physical properties of the CMB

- For realistic values of the outer core viscosity, the viscous coupling is negligible.
- Magnetic coupling:
 - Lowermost mantle very high conductivity: 5 10⁵ Sm⁻¹ (conductivity of iron at core condition) and RMS of the radial magnetic field at the CMB: 0.7 mT.

– Or more RMS...

- Magnetic field surface observations (degrees <13): RMS ~0.3 mT
- But smaller scales unknown.
- Nutation suggest that most of the energy of the ***** magnetic field at the CMB comes from these!

Constraints on the physical properties of the ICB

Constraints on the physical properties of the ICB

- No solution for a purely EM coupling.
- Outer core viscosity: ~ 10 m² s⁻¹: unrealistic!
- RMS of the mag. field at the ICB: 6-7 mT.

Another mechanism is required to explain the observed damping of the FICN mode !

Inner core viscous deformation?

Koot & Dumberry EPSL (2011)

– For Inner core viscosity: ~2-7 10¹⁴ Pa s.

– RMS of the mag. field at the ICB: 4.5 - 6.5 mT $_{\star}$

 $\frac{\star \star \star \star}{\star \star \star \star}$

Modelling the Earth's rotation

• Interior

Realistic Model

- Rotation
- Current model IAU2000 (Mathews et al. 2002)
 - interior properties summarised in a set of parameters
 - poorly known parameters are estimated, improving knowledge of the Earth's interior (Koot et al. 2010)
 - other parameters are **computed** for a **spherical** Earth
- Former model IAU1980 (Wahr 1981)
 - full consideration of the polar flattening
 - disregarded non-hydrostaticity which affects the FCN period (Gwinn et al. 1986), eventually discarded
 - since then refined (e.g. Huang et al. 2011), now working on non-hydrostaticity and associated triaxiality

Non-hydrostaticity & Triaxiality

Work of Antony Trinh

- **Spectral** analysis of the equations of **continuum mechanics**
- Rotation perturbations modelled as infinitesimal toroidal degree-1 displacement
- ODE submatrix:
 - spherical, non-rotating
 - biaxial, rotating
 - triaxial, rotating, convecting

ROB

Earth/atmosphere/ocean interactions

res

Friction

Friction

Nutation residuals: observation-model (VLBI-IAU2000A)

The nutation after removal of the FCN and main tidal terms

Better understanding of the Earth interior!

 $\frac{\star\star\star\star}{\text{ROB}}$