Direct estimation of the Solar acceleration using geodetic/astrometric VLBI observations

<u>Minghui Xu</u>, Guangli Wang & Ming Zhao Shanghai Astronomical Observatory, CAS

> 7, Mar, 2012 Madrid, Spain 7th IVS General Meeting

Contents

• Introduction

- The relationship between the secular aberration and the Solar acceleration

- Two methods
 - How to estimate the acceleration ?
- Data and results
- Comparison
- Work in the future

Introduction (1/2)

- The Sun accelerates as it travels in the Galaxy which causes the secular aberration drift.
- This effect has the similar nature of the physical proper motion with the magnitude of up to 4-5 uas/yr .
- Proportional to time
 30 years

 more than 100uas

It affects the ICRF systematically!

(Eubanks et. al. 1995, Sovers et. al. 1998, Perryman et. al. 2001, Kovalevsky 2003, Kopeikin & Makarov 2006, Titov 2011)

Introduction (2/2)

• The relationship between this effect and the Solar acceleration

$$\vec{k}_t = \vec{k}_0 + \frac{1}{c}\vec{k}_0 \times \left(\vec{a} \times \vec{k}_0\right)\left(t - t_0\right)$$

This is the classical form.

One assumption here is the acceleration is a constant in these 30 years.

Two methods(1/2)

• "Global solution"

-The acceleration was estimated as a three dimension vector and a global parameter

-The partial equation:

$$\frac{\partial \tau}{\partial \vec{a}} = -\frac{1}{c^2} \left[\vec{b}_0 - \left(\vec{b}_0 \cdot \vec{k}_0 \right) \vec{k}_0 \right] \left(t - t_0 \right)$$

Two methods(2/2)

• "Time-series solution"

-Step 1: the time-series of the velocity adjustment of the observer

$$\frac{\partial \tau}{\partial \vec{V}} = -\frac{1}{c^2} \left[\vec{b}_0 - \left(\vec{b}_0 \cdot \vec{k}_0 \right) \vec{k}_0 \right]$$

-Step 2: obtain the linear trend from the time-series by least square

The estimation of the acceleration and the velocities was realized by the USER_PARTIAL, a function of the Calc/Solve software.

A global set of VLBI data:

from 1980.4 to 2011.10, more than 7 million observations
4632 24-h sessions: 1) duration > 18 hours

the length of longest baseline > 3000km

Generally, the parameterization is the same as the routine VLBI data analysis. But some strategies were different for time-series solution.

Global solution

Three components in the Galactic coordinate system:

 $(7.47 \pm 0.46, 0.17 \pm 0.57, 3.95 \pm 0.47)$ mm/s/yr

Divided the entire set of VLBI data into fours groups and estimated the acceleration with the same analysis configuration, respectively.

Num. of session	X(Galactic enter)	Y	Z(Galactic pole)
3474	7.44 ± 0.53	0.63 ± 0.67	3.27 ± 0.54
3474	7.28±0.53	-0.12 ± 0.66	3.93±0.53
3474	7.22 ± 0.53	0.06 ± 0.66	4.55 ± 0.54
3474	7.86±0.53	-0.41 ± 0.67	3.98±0.54

Notes. All sessions are sorted and numbered in time order. Then the first group does not contain the sessions whose number are 4n+1; the second group does not contain the sessions whose number are 4n+2; ..., and so on.

• Time-series solution

The velocity was estimated once a year and then the linear trend was fitted.

The galactic center component is 9.10 ± 1.74 mm/s/yr.

• Time-series solution

The velocity was estimated once a year and then the linear trend was fitted.

The second component is 0.56 ± 1.60 mm/s/yr

• Time-series solution

The velocity was estimated once a year and then the linear trend was fitted.

The Galactic pole component is 4.53 ± 1.88 mm/s/yr

Comparison (1/3)

Global solution vs. time-series solution

 $(7.47 \pm 0.46, 0.17 \pm 0.57, 3.95 \pm 0.47)$ mm/s/yr $(9.10 \pm 1.74, 0.56 \pm 1.60, 4.53 \pm 1.88)$ mm/s/yr

This comparison shows that results of two methods are consistent:

The result of the global solution shows much better accuracy.The result of time-series solution shows the velocity variation in detail.

The estimate of the global solution was chosen as the final value.

Comparison (2/3)

• Our estimate vs. Titov's estimate

Through post fitting the coordinate time series of the 497 radio sources, (Titov et al., 2011) obtained the acceleration vector (6.4 \pm 1.5uas/yr, $\alpha = 263^{\circ} \pm 11^{\circ}$, $\delta = -20 \pm 12^{\circ}$)

Representing this result in the same unit as our result:

(8.3±2.2, 1.3±2.2, 0.9±1.6) mm/s/yr

•Our result (7.5 \pm 0.5, 0.3 \pm 0.6, 4.0 \pm 0.5) mm/s/yr

• Differences:

The Galactic pole components are significant different.
The other two components of our result are a little smaller than those of Titov
The accuracy of our result is much better.

Comparison (3/3)

Our estimate vs. Galactic potential model

•The galactic center component can be obtained based on the mass model of Galaxy (Paczynski 1990, Dehnen & Binney 1998)

•For example, to correct the period derivative of the pulsars, (Zakamska & Tremaine 2005) used the Galactic acceleration $2.0 \times 10^{-10} m / s^2$

• Our estimate vs. the latest result

• Based on BeSSeL survey, (Brunthaler et al. 2011) gave the best values of the Solar galactic radius 8.3 ± 0.23 kpc and Solar velocity 251.25 \pm 7km/s.

•Then the acceleration of the sun toward the Galactic centre has the amplitude $2.5 \times 10^{-10} \, m \, / \, s^2$

Our estimate of this component: $2.4 \times 10^{-10} m / s^2$

Future work

• The third component:

•It has almost the same amplitude as the component of Galactic center

•It is larger than the expected acceleration of the Z oscillation perpendicular the Galactic plane (Gould & Vandervoort 1972, Cox 2000)

•It points to the Galactic pole

How to explain it?

Thank you for your attention.