

Alessandra Bertarini, IGG University of Bonn & MPIfR Bonn Walter Alef, MPIfR Bonn Arno Müskens, IGG University of Bonn Helge Rottmann, MPIfR Bonn Jan Wagner, MPIfR Bonn

DiFX Correlator at Bonn

DiFX -> Distributed FX correlator i.e. its outputs are in frequency domain.

DiFX is a software correlator.

Developed by Adam Deller et al. in 2007.

Deployed at Bonn in 2008 for testing.

Astronomy correlation started in October 2009 : pcal extraction and path into the Mark IV output missing. DiFX was not then yet operational for geodesy.

Geodesy correlation with DiFX started in December 2010 when Mark IV broke beyond repair.

DiFX runs on a High Performance Compute Cluster

- 60 nodes (8 compute cores each).
- 4 Tflops in the Linpack benchmark test.
- 20 Gbps InfiniBand.
- 10 RAIDs (~380 TB storage).
- 1 control node for correlation (fxmanager).
- 2 user interaction nodes (frontend & frontend2) for post-correlation applications.
- 1 control computer (appliance) for installing and monitoring the cluster.
- Closed loop rack cooling (full load ~20-25 kW).
- Every Mark 5 unit has 2x1Gb Ethernet connections (soon InfiniBand).

DiFX in Bonn

4

- Playback units: 14 Mark 5 (4 A's, 2 B's, 8 C's)
- Max no. of stations: 20 tested with but with playback speed reduction (presumably openmpi uses both InfiniBand and Ethernet)
- Playback speed: 1.6 Gbps
- Formats: Mark 5A, Mark 5B, LBA, VDIF
- Sampling: 1 bit, 2 bits
- No. Channels: ≤ 16 SB tested; 32 SB x 32 MHz channel (4 Gbps) possible, not yet tested.
- Stokes: all Stokes for circular and linear polarization

DiFX Capabilities II

- Geometrical model: CALC 9
- Phase cal.: pcal extraction of all tones/BBC simultaneously
- Integration time: from milliseconds to seconds
- Spectral channels: max no. of FFT tested 2¹⁸
- Export: FITS files

Interface to Mark IV data format for geodesy

Pulsar: Pulsar gating possible

RFI mitigation (J. Wagner's PhD). DiFX branch version.

Comedia: database to replace the old tape library (H. Rottmann). Currently used in Bonn, soon deployed to DiFX community.

GLOW (LOFAR) application (J. Anderson).

Vex2difx modification for spacecraft tracking (J. Anderson) for Radioastron.

m5bstate part of mark 5 access library programs to read the state counts of data recorded (A. Bertarini). Available to DiFX community.

Fringe finder for 2^18 spectral channels (A. Roy & A. Bertarini) for APEX. Under development.

Simulation on 1.6 GHz data containing noise + one common strong GPS signal (found in spectral channel 49 on 128 total).

GPS signal is offset from the tracked phase centre.

DiFX fringe stopping shift the GPS signal to a non-zero fringe frequency (in the simulated case 22 Hz).

A low-pass filter before the integration cuts the frequencies above 16 Hz (60 dB suppression at 22 Hz).

Any oscillation induced by RFI along the crosscorrelation data trajectory in the UV plane are attenuated by several tens of decibel.

RFI Mitigation II

Comedia I

10

Options								
-ilter	1710 N/						Detail	
🗆 releasable i	modules only		location:					
🗆 modules wi	thout .dir only						vsn:	
slot	module	station	experiments	capacity	datarate		capacity:	
]				datarate:	
CC608	OSOD-104	MC	EY010D EM080B	1317	1024		received:	
CC701	CMVA-006	MC	CHET TEST	960	1024	-		
CC702	WSRT-040	ON	EY013A	2000	1024		experiment(s):	
CC703	NAIC-005	ON	EW014 EY013A	2000	1024			
CC704	TR-00037	UR	EY010D EY013A	4000	1024		Update module	Check-out module
CC705	IAAE-001	SV	EY010D EM080B EY013A	8000	1024		Print library label	Print VSN label
CC706 CC707	IAAE-003 JOD-0053	BD JB	EY010D EY013A EY010D EM080B EW014	8000 8000	1024		Frinchibriary laber	FILL VON HOPE
CC708	NRAO-178	JB IB	EY010D EM080B EW014	2400	1024 1024		Status	
DA108	USN-0021	10	T2079 EUR114	4000	100000000000	7	Number of modules w	vithout .dir files: 3
		-(1)	1	1	1024	1.4	Number of unscanned	modules: 1 Sc
		- I						
			Check-in module				Ref	resh status

_ 🗆 🗙 🗙 comedia: Correlator Media Archive Options Filter Detail □ releasable modules only location: 🗆 modules without .dir only vsn: USN-0202 2000 capacity: slot module datarate station experiments capacity datarate: 1020 DA USN TC 0 received: DA20 USN-0202 R1516 1 DA406 USN-0080 TC R1515 2000 1024 experiment(s): -TC DA505 USN-0195 R1520 2000 1024 Update module Check-out module Print library label Print VSN label Status-Number of modules without .dir files: 3 Number of unscanned modules Scan 1 Check-in module Refresh status Exit

Correlator media archive database

Comedia II

11

Experiment administration database:

Experiments			Detail		
experiment	number	status	code: number:	R1517 2732	
R1519 R1518 EY013D CHET_TEST R1517	2736 2735 2734 2733 2732	finished correlation	Status:	released update experiment delete experiment	
K12023 R1516 EUR115 K12016 R1515	2731 2730 2729 2728 2727	released released waiting for data released released	7		
	Add experiment				

- Equipping of APEX for mm VLBI (A. Roy et al.)
- MK4IN enhancement and testing for IYA 2009 (D. Graham, W. Alef)
- DBBC testing (L. la Porta, A. Bertarini)
- Binary black holes systems (S. Bernhart)
- LBA Calibrator Survey mapping (L. Vega, A. Bertarini)
- Testing new DiFX releases for geodesy (all)
- Mantaining and upgrading VLBI systems at Effelsberg, Pico Veleta and Plateau de Bure (M. Wunderlich, H. Rottmann et al.)

12

- ~ 10 DBBC tests (downconversion mode)
- ~ 5 DBBC tests (PFB mode)
- ~ 32 1 mm trial correlations

near-real-time ftp fringe checks for GMVA and 1 mm

Still the cluster is not fully loaded

2011 Cluster memory usage: peak RAM 0.4 TB

2011 Nodes availability: 100 %

Very reliable cluster

universität**bonn**

- DiFX code is fast but still sensitive to problematic data.
 → Debugging still required.
- Very good support from Haystack for the interface to Mark IV data format.
- Very good support by DiFX developer community.
- Correlation is potentially very fast: a 24 h experiment with 8 stations, 256 Mb/s, 1 bit sampling, 1 pol. could run in
 < 10 h (against ~ 30 h with Mark IV).
- \rightarrow Bottleneck: Mark 5s or processing nodes crash at night.
- DiFX upgrades happen often.
- \rightarrow Test experiments are correlated for every upgrade and stream correlation runs on stable versions.

16

 DiFX offers more opportunity to screw up everything but happily correlate.

 \rightarrow Geodesy always uses the same mode.

 DiFX users requires more sysop skills and programming skills than for the Mark IV.

 \rightarrow We are learning.

• DiFX users need to have more radio interferometry knowledge than for the Mark IV.

 \rightarrow But we are radio astronomers.