Towards an accurate alignment of the VLBI frame and the future Gaia optical frame

Global VLBI imaging observations of a sample of candidate sources

G. Bourda Laboratoire d’Astrophysique de Bordeaux (LAB), France
A. Collioud LAB, France
P. Charlot LAB, France
R. Porcas MPIfR, Bonn, Germany
S. Garrington Jodrell Bank Observatory, UK
By 2015-2020: Two extragalactic celestial reference frames available

VLBI (Radio)
- 1997: ICRF1 – 717 sources – $\sigma \geq 250$ μas
- 2009: ICRF2 – 3414 sources – $\sigma \geq 60$ μas
- 2015-2020: ICRF3 ???

Gaia (Optical magnitude ≤ 20)
- Anticipated position accuracy: 2015–2020
 - 20 000 QSOs $@ V \leq 18 \rightarrow 16$ μas $\leq \sigma \leq 70$ μas
 - 500 000 QSOs $@ V \leq 20 \rightarrow 16$ μas $\leq \sigma \leq 200$ μas

Lindegren et al., 2008
Context

By 2015-2020: Two extragalactic celestial reference frames available

VLBI (Radio)

Position accuracy:
1997: ICRF1 − 717 sources − σ ≥ 250 μas
2009: ICRF2 − 3414 sources − σ ≥ 60 μas
2015-2020: ICRF3 ?

Gaia (Optical magnitude ≤ 20)

Anticipated position accuracy: 2015–2020
20 000 QSOs @ V≤18 → 16 μas ≤ σ ≤ 70 μas
500 000 QSOs @ V≤20 → 16 μas ≤ σ ≤ 200 μas

Lindegren et al., 2008

Linking these 2 frames is important:
• to ensure continuity of the fundamental celestial reference frame
• to register optical & radio positions with the highest accuracy
Gaia-Radio frames alignment

- **Some requirements:**
 - Several hundreds of common sources
 - With a uniform sky coverage
 - Link sources must have:
 - Accurate Gaia position \rightarrow Optically-bright ($V \leq 18$)
 - Accurate VLBI position \rightarrow Good astrometric quality (no extended VLBI structure)
Gaia-Radio frames alignment

- **Some requirements:**
 - Several hundreds of common sources
 - With a uniform sky coverage
 - Link sources must have:
 - Accurate Gaia position → Optically-bright ($V \leq 18$)
 - Accurate VLBI position → Good astrometric quality (no extended VLBI structure)

- **Current status:**
 - ICRF1: 70 sources suitable (*Bourda et al.*, 2008)
Gaia-Radio frames alignment

- **Some requirements:**
 - Several hundreds of common sources
 - With a uniform sky coverage
 - Link sources must have:
 - Accurate Gaia position \(\rightarrow \) Optically-bright \((V \leq 18)\)
 - Accurate VLBI position \(\rightarrow \) Good astrometric quality (no extended VLBI structure)

- **Current status:**
 - ICRF1: 70 sources suitable (*Bourda et al., 2008*)

→ Need to monitor these ICRF2 sources suitable for the alignment
Gaia-Radio frames alignment

Some requirements:

- Several hundreds of common sources
- With a uniform sky coverage
- Link sources must have:
 - Accurate Gaia position → Optically-bright ($V \leq 18$)
 - Accurate VLBI position → Good astrometric quality (no extended VLBI structure)

Current status:

- ICRF1: 70 sources suitable (*Bourda et al., 2008*)

→ Need to monitor these ICRF2 sources suitable for the alignment
→ Need to find new radio sources suitable for accurate Gaia-VLBI alignment
Our project

- **Idea**: New candidates \rightarrow Weak sources (< 100 mJy)
- **Specific VLBI observing program designed** (with EVN & VLBA)

7th IVS General Meeting 5-8 March 2012, Madrid – Spain
Our project

- **Idea:** New candidates \rightarrow Weak sources (< 100 mJy)
- **Specific VLBI observing program designed** (with EVN & VLBA)
 - **Observing Sample:** 447 weak extragalactic radio sources
 - NVSS catalog (excluding ICRF and VCS sources) \rightarrow Not in ICRF2!
 - Optical magnitude $V \leq 18$
 - Total flux density (NVSS) ≥ 20 mJy
 - $\delta \geq -10^\circ$

7th IVS General Meeting 5-8 March 2012, Madrid – Spain
Our project

- **Idea**: New candidates \rightarrow Weak sources (<100 mJy)
- **Specific VLBI observing program designed** (with EVN & VLBA)

Observing Sample: 447 weak extragalactic radio sources
- NVSS catalog (excluding ICRF and VCS sources) \rightarrow **Not in ICRF2**!
- Optical magnitude $V \leq 18$
- Total flux density (NVSS) ≥ 20 mJy
- $\delta \geq -10^\circ$

Observing Strategy:
1. VLBI detection
 (Bourda et al., 2010, A&A 520, A113)
2. Imaging
 (Bourda et al., 2011, A&A 526, A102) (Bourda et al., 2012, in prep.)
3. Accurate astrometry (for the most compact sources)

7th IVS General Meeting
5-8 March 2012, Madrid – Spain

Very Long Baseline Array
NRAO VLA Sky Survey
(Condon et al., 1998)
Step 1: VLBI detection

- Two 48-hour EVN experiments (S/X @ 1Gbps)
 - EC025A: June 2007 – 224 sources
 - EC025B: October 2007 – 223 sources

Robledo, Spain
Ø 70 m

Effelsberg, Germany
Ø 100 m

Onsala, Sweden
Ø 25 m

Noto, Italy
Ø 32 m

Medicina, Italy
Ø 32 m

5-8 March 2012, Madrid – Spain
Step 1: VLBI detection

- Two 48-hour EVN experiments (S/X @ 1Gbps)
 - EC025A: June 2007 – 224 sources
 - EC025B: October 2007 – 223 sources

Weak sources in VLBI

- High sensitivity necessary
- Need large antennas & high recording rate
Step 1: VLBI detection

- Two 48-hour EVN experiments (S/X @ 1Gbps)
 - EC025A: June 2007 – 224 sources
 - EC025B: October 2007 – 223 sources

Weak sources in VLBI

- High sensitivity necessary
- Need large antennas & high recording rate

S/X detection rates:

- EC025A ~ 96 %
- EC025B ~ 82 %

Overall detection rate: ~ 89 %
(398 sources detected)

(Bourda et al., 2010, A&A 520, A113)
Step 2: Imaging

- Four Global VLBI imaging experiments (EVN+VLBA) (S/X @ 512 Mbps)
 - GC034A: March 2010 – 48-hrs – 97 sources
 - GC034BCD: November 2010 – 58-hrs – 118 sources
 - GC034EF: March 2011 – 38-hrs – 75 sources

→ In total, **192 hours** to observe **395 sources** (previously detected)
Step 2: Imaging

- Four Global VLBI imaging experiments (EVN+VLBA) (S/X @ 512 Mbps)
 - GC034A: March 2010 – 48-hrs – 97 sources
 - GC034BCD: November 2010 – 58-hrs – 118 sources
 - GC034EF: March 2011 – 38-hrs – 75 sources

→ In total, **192 hours** to observe **395 sources** (previously detected)

 - GC030: All 105 sources successfully imaged at both X & S bands (100%)
 - GC034A: 63 VLBI maps (65%)
 - GC034BCD: 52 VLBI maps (44%)
 - GC034EF: 30 VLBI maps (40%)

→ In total, X-band VLBI maps determined for **250 sources** (63%)
X-band Total Flux Density

GC030: median = 61 mJy

GC034BCD: median = 59 mJy

GC034A: median = 35 mJy

GC034EF: median = 37 mJy
Examples of VLBI maps for « good » sources

X-band -1^{st} contour level @ 1 – 4%

GC030 GC034A GC034BCD GC034EF

7th IVS General Meeting 5-8 March 2012, Madrid – Spain
Examples of VLBI maps for «bad» sources

X-band 1st contour level @ 1 – 4%

- GC030
- GC034A
- GC034BCD
- GC034EF

7th IVS General Meeting 5-8 March 2012, Madrid – Spain
VLBI Images in BVID

The Bordeaux VLBI Image Database

Home BVID

News

BVID content

Database access

Citations

Links

Contact

7th IVS General Meeting

5-8 March 2012, Madrid – Spain

For GC030:

105 sources have been found!

→ VLBI image summary (in pdf)

<table>
<thead>
<tr>
<th>X-Band</th>
<th>S-Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001+123</td>
<td>0045+003</td>
</tr>
<tr>
<td>0150+015</td>
<td>0210+515</td>
</tr>
<tr>
<td>0652+425</td>
<td>0708+742</td>
</tr>
<tr>
<td>0807+083</td>
<td>0818+312</td>
</tr>
<tr>
<td>0854+334</td>
<td>0903+500</td>
</tr>
<tr>
<td>1007+716</td>
<td>1009+067</td>
</tr>
<tr>
<td>1032+354</td>
<td>1034+574</td>
</tr>
<tr>
<td>1120+517</td>
<td>1140+190</td>
</tr>
<tr>
<td>1201+066</td>
<td>1212+467</td>
</tr>
<tr>
<td>1310+314</td>
<td>1310+484</td>
</tr>
<tr>
<td>1340+289</td>
<td>1345+735</td>
</tr>
<tr>
<td>1520+725</td>
<td>1522+669</td>
</tr>
<tr>
<td>1607+504</td>
<td>1612+376</td>
</tr>
<tr>
<td>1715+425</td>
<td>1721+343</td>
</tr>
<tr>
<td>1742+724</td>
<td>1752+338</td>
</tr>
<tr>
<td>1832+208</td>
<td>1833+250</td>
</tr>
<tr>
<td>2111+801</td>
<td>2116+203</td>
</tr>
</tbody>
</table>

http://www.obs.u-bordeaux1.fr/BVID/GC030
VLBI Images in BVID

7th IVS General Meeting
5-8 March 2012, Madrid – Spain
Astrometric suitability

Number of sources

X-band continuous structure index

GC030

GC034BCD

GC034A

GC034EF

5-8 March 2012, Madrid – Spain
Astrometric suitability

Same criterion as for the selection of ICRF2 defining sources (continuous structure index < 3.0)

- 47 sources
 - X-band continuous structure index
 - GC030

- 26 sources
 - X-band continuous structure index
 - GC034BCD

- 32 sources
 - X-band continuous structure index
 - GC034A

- 14 sources
 - X-band continuous structure index
 - GC034EF
Astrometric suitability

Same criterion as for the selection of ICRF2 defining sources (continuous structure index < 3.0)

\rightarrow 119 VLBI sources suitable for the alignment (i.e. ~50% of the sources we could image)
Next stage

Step 1
VLBI detection ✔

Step 2
VLBI imaging ✔

Step 3
Astrometry ☐

• Astrometry
 ✔ Proposal submitted 1st February 2012
 ✔ Determine VLBI astrometric positions (for the most compact sources)
 → 119 point-like sources
 ✔ 72 hours asked
 ✔ Global VLBI array (EVN+VLBA)
Future prospects

- Investigate further southern hemisphere
- Optical studies/observations for these candidates are on the way
- Quasi-simultaneous VLBI & Gaia observations will be carried out during the mission (*Gaia scanning law*) → Stability/Variability
- Astrophysics: Issues of core shifts
Thanks for your attention ...
The Gaia astrometric mission

- Gaia will observe 1 billion stars, 500,000 QSOs and 350,000 asteroids
- Astrometric accuracy

<table>
<thead>
<tr>
<th>V magnitude</th>
<th>6-13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>mag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallax</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>90</td>
<td>155</td>
<td>275</td>
<td>μas</td>
</tr>
<tr>
<td>Proper motion</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>18</td>
<td>30</td>
<td>50</td>
<td>80</td>
<td>145</td>
<td>μas/an</td>
</tr>
<tr>
<td>Position @2015</td>
<td>6</td>
<td>10</td>
<td>16</td>
<td>25</td>
<td>40</td>
<td>70</td>
<td>115</td>
<td>205</td>
<td>μas</td>
</tr>
</tbody>
</table>

- Launch: fall 2012
- Preliminary catalog: ~ 2015
- Final catalog: 2018-2020
ICRF2 optical counterparts

- **Cross Identification:** ICRF2 \cap LQAC \rightarrow 3195 sources
- **From these:** 276 defining sources (out of 295 ones within ICRF2)

```
<table>
<thead>
<tr>
<th></th>
<th>0 &lt; mag</th>
<th>0 &lt; mag ≤ 20</th>
<th>0 &lt; mag ≤ 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnitude V</td>
<td>1120</td>
<td>1184</td>
<td>511</td>
</tr>
<tr>
<td>Magnitude R</td>
<td>2076</td>
<td>1938</td>
<td>755</td>
</tr>
<tr>
<td>Magnitude I</td>
<td>1806</td>
<td>1800</td>
<td>1013</td>
</tr>
</tbody>
</table>
```

Number of radio sources from ICRF2 with an optical counterpart within LQAC [Large Quasar Astrometric Catalog; Souchay et al. 2009]
ICRF2 sources suitable for the alignment

Number of objects

0<ν≤500
500<ν≤1000
1000<ν≤1500
1500<ν≤2000
2000<ν≤2500
2500<ν≤3000
3000<ν≤3500
3500<ν≤4000
ν>4000

X-band Flux Density (mJy)
The structure index (SI) indicates the expected magnitude of the effects of intrinsic source structure on VLBI delay observations, according to the median value of the structure delay corrections (τ_{median}) calculated for all projected VLBI baselines that might be observed, using the algorithm devised by Charlot (1990). While Fey & Charlot (1997) separated sources into four categories, with values of the structure index ranging from 1 to 4, a continuous scale was adopted for the present work (as also done for the ICRF2; see IERS Technical Note 35). It is defined as follows:

$$SI = 1 + 2 \log(\tau_{\text{median}})$$

(1)

where τ_{median} is expressed in picoseconds (ps). Additionally, SI values are constrained to be always positive by setting SI = 0 when $\log(\tau_{\text{median}}) < -0.5$ (i.e. $\tau_{\text{median}} \lesssim 0.3$ ps). There is close correspondence at the (discrete) SI boundaries between the continuous SI values defined here and the values defined in Fey & Charlot (1997) (SI = 1.95 vs. 2 for $\tau_{\text{median}} = 3$ ps, SI = 3.00 vs. 3 for $\tau_{\text{median}} = 10$ ps, SI = 3.95 vs. 4 for $\tau_{\text{median}} = 30$ ps).
Interests for the physics of QSOs

Core shifts → Put constraints on the physics of AGNs?

Kovalev et al. 2008
Challenge: AGN radio-optical core-shift

AGN = Active Galactic Nuclei

Frequencies in VLBI:
S ~ 2 GHz
X ~ 8 GHz
K ~ 24 GHz
Ka ~ 32 GHz
Q ~ 43 GHz

VLBI observation ~ 100 µas
Kovalev et al. 2008

Gaia observation

AGN unified model
Urry & Padovani (1995)

Jet
Black Hole
Torus of Dust
Accretion Disk
Examples of related scientific questions

- Dominating optical emission mode within AGNs? Thermal emission (i.e. accretion disk) or non-thermal (relativistic jets)?
- Origin of the relativistic jets observed within AGNs?
- Is the core-shift within AGNs depending on frequencies? On time?

![Diagram of AGN emission modes](image)