• SELenological and ENgineering Explorer
 • JAXA, 2007-2009
 • 3 lunar satellites

• same-beam differential VLBI (D-VLBI)
 • improved orbit consistency from several hundreds to several tens of metres [Goossens et al., 2010]

• nominal accuracy
 (differential phase delay rms):
 • 3.44 ps (1 mm) S-band
 [Kikuchi et al., 2009]

\[\Delta \tau = \tau_{RSTAR} - \tau_{VSTAR} \]
• 2 datasets (from NAOJ Mizusawa):
 • October 2008, 17-22: 4 japanese antennas
 • January 2008, 12-16: 4 japanese antennas + intercontinental baselines
• 2 datasets (from NAOJ Mizusawa):
 • October 2008, 17-22: 4 japanese antennas
 • January 2008, 12-16: 4 japanese antennas + intercontinental baselines
• Implementation into VieVS
• Challenges:
 • Moving sources at finite distance
 • Relativistic time and coordinate transformations (TDB, TT, TCB, TCG resp. BDRS, TRS, BCRS, GCRS)
 • Consistent application of corresponding scaling factors (Lc, Lg, Lb)
• Good agreement of 3 models (< 1 ps resp. < 3 ps)
 • Sekido & Fukushima 2006
 • Fukushima 1994
 • Klioner 1991
Delay model

- Implementation into VieVS
- Challenges:
 - Moving sources at finite distance
 - Relativistic time and coordinate transformations (TDB, TT, TCB, TCG resp. BDRS, TRS, BCRS, GCRS)
 - Consistent application of corresponding scaling factors (Lc, Lg, Lb)
- Good agreement of 3 models (< 1 ps resp. < 3 ps)
 - Sekido & Fukushima 2006
 - Fukushima 1994
 - Klioner 1991

Differences correspond to the theoretical values

Verification through comparison of 3 models
10 mm ↔ 33 ps residuals o-c

\[\Delta \tau = \tau_{RSTAR} - \tau_{VSTAR} \]
10 mm \leftrightarrow 33 ps residuals o-c

$\Delta \tau = \tau_{RSTAR} - \tau_{VSTAR}$

JAN08 residuals obs-com after baseline offset
• Residuals are at the same level as those from NAOJ ± 10 mm (30 ps)

• NAOJ explains residuals with "probably mismodelling of solar radiation pressure"
level of cancellation

<table>
<thead>
<tr>
<th>(long baselines)</th>
<th>τ</th>
<th>$\Delta \tau$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOMETRY:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antenna \pm 5cm</td>
<td>300 ps</td>
<td>1-2 ps</td>
</tr>
<tr>
<td>Orbit \pm 10 m</td>
<td>150 -1000 ps</td>
<td>2-8 ps</td>
</tr>
<tr>
<td>EOP</td>
<td>5 ps (60 ps)</td>
<td>$< 0.05 (0.1)$ ps</td>
</tr>
</tbody>
</table>

- dUT1: 5 ms
- xp, yp: 200 mas
- dX, dY: 300 mas
Level of cancellation

(long baselines)

<table>
<thead>
<tr>
<th></th>
<th>τ</th>
<th>$\Delta \tau$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOMETRY:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antenna \pm 5cm</td>
<td>300 ps</td>
<td>1-2 ps</td>
</tr>
<tr>
<td>Orbit \pm 10 m</td>
<td>150 -1000 ps</td>
<td>2-8 ps</td>
</tr>
<tr>
<td>EOP</td>
<td>5 ps (60 ps)</td>
<td>< 0.05 (0.1) ps</td>
</tr>
<tr>
<td>dUT1:</td>
<td>5 ms</td>
<td></td>
</tr>
<tr>
<td>xp, yp:</td>
<td>200 mas</td>
<td></td>
</tr>
<tr>
<td>dX, dY:</td>
<td>300 mas</td>
<td></td>
</tr>
</tbody>
</table>

GEOMETRY:

- **Antenna \pm 5cm:** 300 ps, 1-2 ps
- **Orbit \pm 10 m:** 150 -1000 ps, 2-8 ps
- **EOP:** 5 ps (60 ps), < 0.05 (0.1) ps
 - dUT1: 5 ms
 - xp, yp: 200 mas
 - dX, dY: 300 mas

Usual elev > 20° min. elev. 10° (5°)

ATMOSPHERE:

<table>
<thead>
<tr>
<th></th>
<th>τ</th>
<th>$\Delta \tau$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trop_hydr</td>
<td>2-20 (10-60) ns</td>
<td>30-300 (50-1000) ps</td>
</tr>
<tr>
<td>a priori</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trop_wet</td>
<td>1-3 (4) ns</td>
<td>4-40 (10-60) ps</td>
</tr>
<tr>
<td>ECMWF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ionosphere</td>
<td>1.5 (2-10) ns</td>
<td>10 (80) ps</td>
</tr>
<tr>
<td>TEC-maps</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Peak at noon; nearly all observations during the night
Ionosphere

OCT08 residual ionosphere

separation angle

elevation angle

[C. Tierno Ros]
simulated turbulence

VieVS-simulator [Pany et al., 2010]; N = 30
simulated turbulence

VieVS-simulator [Pany et al., 2010]; N = 30
VieVS-simulator [Pany et al., 2010]; N = 30

JAN08 simulated residual turbulence

Very low elevation (5°)
• Geometric effects (station coordinates, source coordinates, EOP) are nearly cancelled out.

• Residual tropospheric effects can reach the level of significance.
 • Particularly for intercontinental baselines.

• But: Applying wet troposphere and ionospheric corrections doesn‘t improve the result significantly.
 • Some residuals decrease but some others increase.
\[\Delta \tau = \tau_{RSTAR} - \tau_{VSTAR} = \\
= [(RSTAR - St1) - (RSTAR - St2)] - [(VSTAR - St1) - (VSTAR - St2)] \\
\frac{\partial \Delta \tau}{\partial VSTAR} = -\frac{VSTAR - St1}{r_{VSTAR-St1}} + \frac{VSTAR - St2}{r_{VSTAR-St2}} \]
\[\Delta \tau = \tau_{\text{RSTAR}} - \tau_{\text{VSTAR}} = \]
\[= [(RSTAR - St1) - (RSTAR - St2)] - [(VSTAR - St1) - (VSTAR - St2)] \]
\[\frac{\partial \Delta \tau}{\partial VSTAR} = - \frac{VSTAR - St1}{r_{\text{VSTAR}-\text{St1}}} + \frac{VSTAR - St2}{r_{\text{VSTAR}-\text{St2}}} \]
\[\Delta r = 0 \]

1 ps noise: OCT08: ± 100 m
JAN08: ± 50 m

implement condition \(\Delta r = 0 \)
• Model for orbit estimation (xyz) is correct, but highly correlated and unstable.

• Possible solution: $\Delta r = 0$

• NAOJ: total orbit errors at an average level of 18m

• Estimates: several km \rightarrow some m

• Goal: find better strategies
 • Line of sight
 • estimate orbit parameters

• Upcoming: Studying estimation strategy with VLBI observations to GNSS-satellites.
References:

Pany et al., 2010: *Monte Carlo simulations of the impact of troposphere, clocks and measurement errors on the repeatability of VLBI positions*, J. of Geodesy, DOI: 10.1007/s00190-010-0415-1.