Influence of source constellations on UT1 derived from IVS INT1 sessions

Outline

- Background
- SkyPlot program
- Analysis strategy
- Results
- Conclusions

Background

A fictional baseline reference point is defined as the projection of the baseline midpoint onto the ellipsoid

Background

In a different projection the baseline system can be seen as a hemisphere put on top of the ellipsoid at the baseline midpoint.

SkyPlot program

- Horizon limits of the two stations and the observations are best displayed in a stereographical projection (plotted with SkyPlot)

- SkyPlot uses SKD files as inputs and creates azimuth – elevation files where the baseline midpoint is the reference point

Minttu Uunila – Aalto University Metsähovi Radio Observatory Axel Nothnagel, Judith Leek – IGG, University of Bonn

- Process INT1 sessions (baseline Kokee-Wettzell) from 2009-2011 with SkyPlot program (SKD files as input)
- Analyze dUT1 estimates and formal errors with Vienna VLBI Software (VieVS)
- Write a Matlab program to give quality codes depending on source positions (SkyPlot output files as input files)
- Calculate how many of the scheduled scans were observed and correlated

- Sky was divided to 6 sections
- The azimuth elevation files have the values in the format (because of plotting):
- Azimuth = -azimuth + π /2, Elevation = π /2 elevation

180°

Sections	1,3 & 5	2,4 & 6	1 & 2	3 & 4	5 & 6
Azimuth limits	$\pi/2 > az > -\pi/2$	-π/6 >az > -3π/2	-	-	-
Elevation limits	-	-	$\pi/2 > el > \pi/3$	$\pi/3 > el > \pi/6$	$\pi/6 > el > 0$

- Quality codes A, B, C and D were given, if there was 3 or more sources in both sections of a section pair
- Code F is given, if the session does not have enough sources in any of the section pairs

KOKEE - WETTZELL

180°

Code	Section pair	
А	1 & 2	
В	1 & 4 or 2 & 3	270° 2 4 6 5 9
С	3 & 4	3 1
D	5&6	

Minttu Uunila – Aalto University Metsähovi Radio Observatory Axel Nothnagel, Judith Leek – IGG, University of Bonn

	VieVS modeling		VieVS setup	
	options		options	
A priori EOP	IERS C04	dUT1 interval,	60 min, 0.0001 ms/	
Ephemerides	JPL 421	constraint	day	
Precession/nutation		ZWD interval,	60 min, 0.0001 ps²/ s	
Trecession/nutation	IAU 2000A	constraint		
TRF	VTRF2008			
CRF	ICRF2	Clock interval, constraint	1440 min, 0.5 ps²/s	
Mapping function	VM1			
Elevation cutoff	0 degrees			

- 600 INT1 sessions were processed from 2009-2011 with SkyPlot
- 568 were analyzed with VieVS (32 could not be analyzed due to missing NGS files, unmeasured or uncorrelated sessions)
- 5 sessions were removed due to large formal errors (>100 µs). These were from categories C and D.

Engineering

- More categories were added, because there was only 1 session with code A
- AAA: former A with 3 or more sources in sections 1&2
- AA: 2 sources in both sections 1&2
- A: 1 source in both sections 1&2
- No outliers for AAA, AA and A

Minttu Uunila – Aalto University Metsähovi Radio Observatory Axel Nothnagel, Judith Leek – IGG, University of Bonn

AAA AA A B C D F Formal errors (µs) of AAA-F categories (session counts on x-axis)

Aalto University School of Electrical Engineering

dUT1 estimate relative to the IERS C04 a priori on the left for A-F (A marked with black, B: red, C: green, D: blue, F: magenta), on the right
 for AAA-F (AAA: black, AA: yellow, A: cyan)

Aalto University School of Electrical Engineering

• Formal errors on the left for A-F (A marked with black, B: red, C: green, D: blue, F: magenta), on the right for AAA-F (AAA: black, AA: yellow, A:

cyan) Minttu Uunila – Aalto University Metsähovi Radio Observatory Axel Nothnagel, Judith Leek – IGG, University of Bonn

 RMS values of dUT1 estimates relative to the IERS C04 a priori and their formal errors

Codo PMS (us)

• $dUT1_A = 14.76 + -5.37 \ \mu s$

		COUC	
Code	RMS (us)	AAA	-
A	- (µC)	AA	9.94 +/- 16.24
B	25 22 +/- 12 39	А	25.06 +/- 13.20
C	23 83 +/- 14 75	В	25.22 +/- 12.39
D	27 45 +/- 17 06	С	23.62 +/- 14.83
F	47 07 +/- 15 13	D	27.96 +/- 17.28
	47.07 77 10.10	F	47 53 +/- 15 18

Minttu Uunila – Aalto University Metsähovi Radio Observatory Axel Nothnagel, Judith Leek – IGG, University of Bonn

- Session counts in different categories were calculated
- 7.2% of the sessions in the new categories came from C
- 4.8% from D
- and 3.8% from F

Code	Α	-	-	В	С	D	F
Sessions	1	-	-	49	265	168	80
Code	AAA	AA	А	В	С	D	F
Sessions	1	2	28	49	246	160	77

- A Matlab script was written to calculate the number of scheduled scans from SKD files and the number of observed scans from NGS files
- Unmeasured / Uncorrelated sessions are excluded from this results (32 sessions)
- 98.80% of scheduled scans were observed and correlated in 2009-2010

- Mean scan counts (MSCs) were calculated
- MSCs for categories A-D are about 22 scans per session
- Category F is an exception with a scan count of about 20 scans per session

Code	Α	В	С	D	F
MSC	22	22.25	21.49	22.74	19.61

Conclusions

- No outliers were found for formal errors in categories AAA, AA and A
- More sessions could be analyzed (only 1 session with code A found so far), but earlier sessions might use the same source distribution
- Only 31 of the 563 sessions had more than one source in the sections 1 or 2
- B code could be divided to BBB, BB and B to see if more sessions from category F would move into these
- A test campaign? More sources to sections 1&2 could be scheduled to ensure the results
 Minttu Uunila Aalto University Metsähovi Radio Observatory
 Axel Nothnagel, Judith Leek IGG, University of Bonn

Thank you!

