## Consistent computation of ITRF and ICRF from homogeneously processed observation data

## M. Seitz<sup>1</sup>, P. Steigenberger<sup>2</sup>, T. Artz<sup>3</sup>

1 Deutsches Geodätisches Forschungsinstitut

2 Institut für Astronomische und Physikalische Geodäsie, TU München

3 Institut für Geodäsie und Geoinformation, Universität Bonn

7<sup>th</sup> IVS General Meeting Madrid, Spain 04.-09. March 2012



#### **Current situation for ITRF / ICRF computation**

ICRF



7th IVS General Meeting, 04.-09. March 2012

2



**ITRF** 



#### **Current situation for ITRF / ICRF computation**



# CGE

#### ICRF

ITRF



#### **Current situation for ITRF / ICRF computation**



Lack of consistency for VLBI station network (scale, network geometry) and for EOP.

# DGFI

#### **Current situation for ITRF / ICRF computation**



ICRF

ITRF

#### **Consistent realization of ITRS and ICRS**



- TRF, CRF and EOP are simultaneously estimated in one adjustment
- Only minimum conditions are used for datum realization
- Origin and scale are realized according to IERS conventions



# What is expected from a common adjustment of CRF and TRF?

- Consistency between all parameters
- Improvement of the accuracy of EOP time series w.r.t. techniquespecific series (motivated e.g. by IERS CO4 series)
- Effects on CRF [positions and their standard deviations] due to
  - Combination of EOP
  - Combination of station coordinates
- → CRF should benefit from the combination of the different techniques (done for TRF and EOP).



### Data used

- Time series of normal equations of VLBI, GPS and SLR data
- Based on consistent models and parameterizations

|      | time span | resolution          | institution        |
|------|-----------|---------------------|--------------------|
| VLBI | 1984-2007 | session-wise (24 h) | combined: IGG+DGFI |
| GPS  | 1994-2007 | daily               | GFZ                |
| SLR  | 1993-2007 | weekly              | DGFI               |

Common parameters (sum≈45,000)

|      | Station coord. | Source<br>coord. | Terr.<br>pole | Celest.<br>pole | UT1-<br>UTC | Origin | Scale |
|------|----------------|------------------|---------------|-----------------|-------------|--------|-------|
| VLBI | х              | х                | х             | х               | х           |        | х     |
| GPS  | х              |                  | х             | (x)             | (x)         |        |       |
| SLR  | Х              |                  | Х             |                 | (x)         | Х      | х     |



### CRF: distribution of sources





## Standard deviations of source positions (I)

# Change of standard deviation of declination w.r.t. VLBI-only (sources with $\delta_{DF} \le 5$ mas)



Standard deviations decrease in general.



## Standard deviations of source positions (II)

#### Change of standard deviation of declination w.r.t. VLBI-only



- Standard deviations decrease in general.
- Sources observed by VCS sessions only benefit most.
- About 90% of the decrease is caused by pole combination.



## **EOP** results

#### X component of terrestrial pole



Standard deviations decrease in general and significantly for the GNSS era.



## Effect of combination on source positions

#### **Comparison with VLBI-only solution**





## Effect of EOP combination on CRF (II)

Declination w.r.t. VLBI-only [mas]





Right ascension w.r.t. VLBI-only [mas]



Systematics of up to 0.5 mas for some of the sources with a declination between -40° and 30°

 $\rightarrow$  VCS sources are stronger affected by the combination.



## Effect of EOP combination on CRF (III)

#### **Right ascension**



#### Marked sources

- $-40^{\circ} < DE < 30^{\circ}$
- |∆RA·cos(DE)| ≥ 0.1 mas
- 108 sources observed in 21 sessions / 18 VLBA sessions (105 sources)
- → EOP derived from regional VLBI and global GPS networks seem to show systematic differences

#### Mean effect on CRF is very small.



## Effect of EOP combination on CRF (IV)

#### **Combination of different EOP**



→ Combination of LOD has a larger impact on source positions than combination of pole and nutation rates.



7th IVS General Meeting, 04.-09. March 2012 18

## Conclusions (I)

## **Common adjustment of TRF, CRF and EOP is possible**

Effect on the CRF:

- Datum sources: WRMS 0.004 mas (range ± 0.05)
- All sources: WRMS 0.007 mas (range -1.0/1.5)
- Standard deviations are improved in general (combination of the pole)
- Systematic effects on some of the sources observed by VCS sessions only (combination of LOD )

#### → What do we reach?

- Consistent solution for all parameters (TRF, CRF and EOP) with full variance-covariance information for all parameters
- Continuous EOP series (for satellite era) also for UT1-UTC and nutation
- Improvement of formal errors of EOP and source positions due to the combination
- Deformation of the solution is minimized as only minimum conditions are used



## Conclusions (II)

#### **Issues of research**

#### **EOP** combination

- effect on sources observed by regional (VCS) sessions only: different effects on sources observed before satellite era, in SLR-only and in SLR+GNSS era
- impact of different EOP on the CRF, e.g. impact of possible offsets in LOD derived from satellite techniques

#### **TRF** combination

effects of co-location sites on the southern hemisphere on the CRF



Thank you for your attention

CGE