Correlation and Post-Processing for VLBI2010

Roger Cappallo MIT Haystack Observatory 2012.3.5

0

Overview

New VLBI2010 system driving transition to new processing capabilities

Hardware Mk4 correlator → DiFX cluster Mk5a & Mk5b → Mk5c & Mk6

Software Enhanced VLBI2010 characteristics → DiFX → New post-correlation modes and features

VLBI2010 drivers

- Dual linear polarization
 - Combined fringe fit (pseudo Stokes I) from all 4 products
- Aggregate data rates of 8 Gb/s, channelized as 64 streams
- Phase-delay across 6-8 GHz of sky bandwidth requires removal of 2π ambiguities
 - multiple phase cal tones link different bands
 - differential ionosphere a significant effect
- Mark 6
 - VDIF support
- Support of legacy equipment
 - Mismatched video BW's
 - Mixed circular/linear fringe fitting

- High data rates (16+ Gb/s)
- Single channel BW's as high as 512 MHz
- Coherent combination of Nyquist bands (without pcal) to maximize snr

DiFX Software Correlator

- FX correlator, originally written by Adam Deller to facilitate his PhD research in 2006
- Now improved & maintained by an international team of ~12 developers
- Widely used (VLBA, LBA, MPIfR, ...)
- Executes on a cluster of high-performance servers, using MPI and Intel's IPP library
- Extremely flexible:
 - Multiple phase centers within FOV
 - Pulsar binning
 - eVLBI
 - Phase cal and Tsys extraction
 - Input data formats: LBA, Mk4, VLBA, VDIF
 - Complex samples
 - Output datasets to FITS-IDI or Mk4/fourfit

Software correlator = flexibility

DiFX Development at Haystack

- DiFX to HOPS interface software
- DiFX-specific modifications to HOPS
 - Spectral domain visibilities, pcal extraction, etc.
- HOPS distribution with DiFX
- ~100 core cluster
 40 Gb/s Infiniband
- Hosted annual meeting last December

Example of DiFX Flexibility: correlating 32 MHz x 8 MHz ch

 Match corresponding channels prior to XY* multiply

lonosphere

- differential TEC can be fit and/or specified a priori
 - all-sky models from GPS available, but not yet used
 - fit made difficult by nonlinearity
- fourfit
 - search for delay & rate that maximizes coherent sum over all t's and f's
 - $^\circ$ now do multiple passes with different values of Δ TEC, and find maximum

Fourfit Ionosphere Fit

- Maximize sensitivity in τ_g by combining all 4 Stokes polarization products
- Form an approximation to Stokes I:
 - from the 4 correlation products form
 - $I \cong (HxH + VxV) \cos \Delta + (HxV VxH) \sin \Delta$

 Δ = differential parallactic angle

• correct to first order in the D terms

VLBI2010 Signal Path

Increased Postprocessing Setup Complexity

- Now have 4 frequency bands and 4 polarization products
- 4 passes need to be merged (fourmer)
- Need to correct for separate delays and phases in each signal path
- pcal has a delay ambiguity of 200 ns

fourfit features for VLBI2010

 Multitone phasecal extraction uses all (desired) tones in each band to derive instrumental delay for groups of chan/pols sharing a sampler

fourfit features for VLBI2010

- If necessary, apply explicit delay and phase offsets per:
 - station
 - channel
 - polarization

if station A
pc_mode multitone
pc_period 30
pc_tonemask abcdefgh 0 0 8 0 4 0 5 0
pc_phases_l abcdefgh 12 13 11 12 24 -6 38 110
pc_phases_r abcdefgh 11 29 14 11 64 -2 44 132
samplers 2 abcd efgh
delay_offs bdh 2.7 -3.65 4.778

For the Future

- Grow the existing cluster at Haystack to better match observing data rates
- Continually refine post-processing software, e.g.:
 - operational efficiency improvements
 - automated selection of pcal masks
 - $\phi(f)$ due to source structure
 - handle mixed polarization combinations to legacy stations, such as {RxV, RxH, LxV, LxH}