VLBI2010: Progress and Challenges

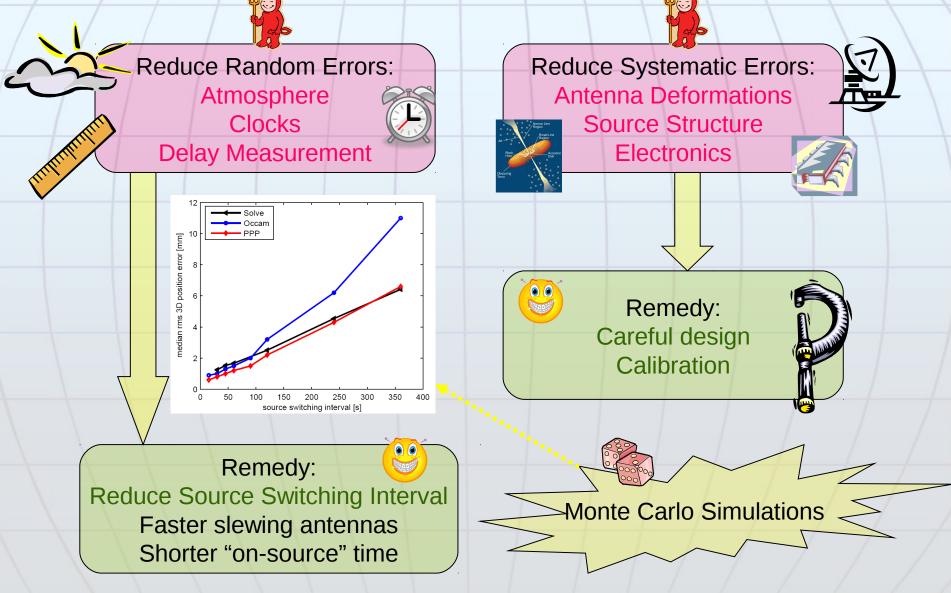
Bill Petrachenko Natural Resources Canada (NRCan) Bill.petrachenko@nrcan-rncan.gc.ca

> IVS GM2012, Madrid, Spain March 4-7, 2012

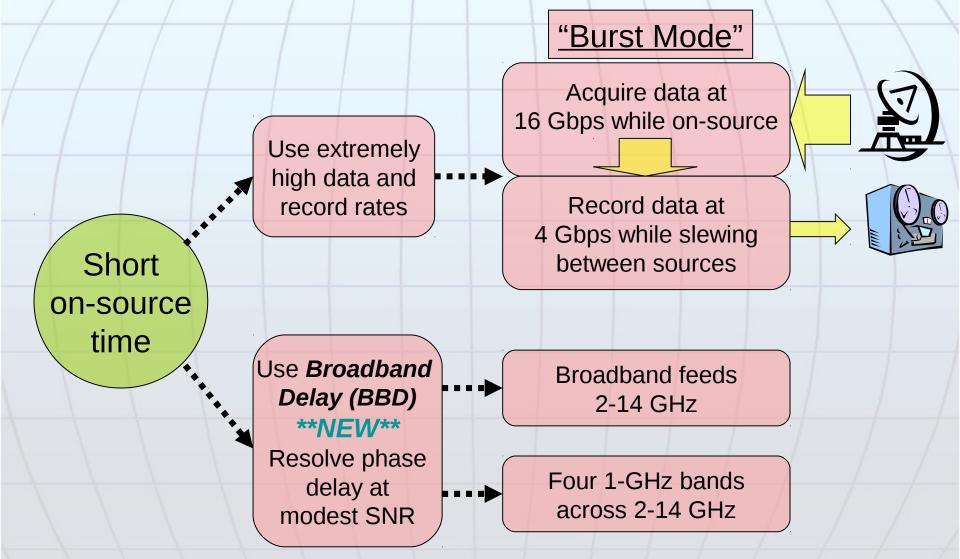
Goals of the next generation system

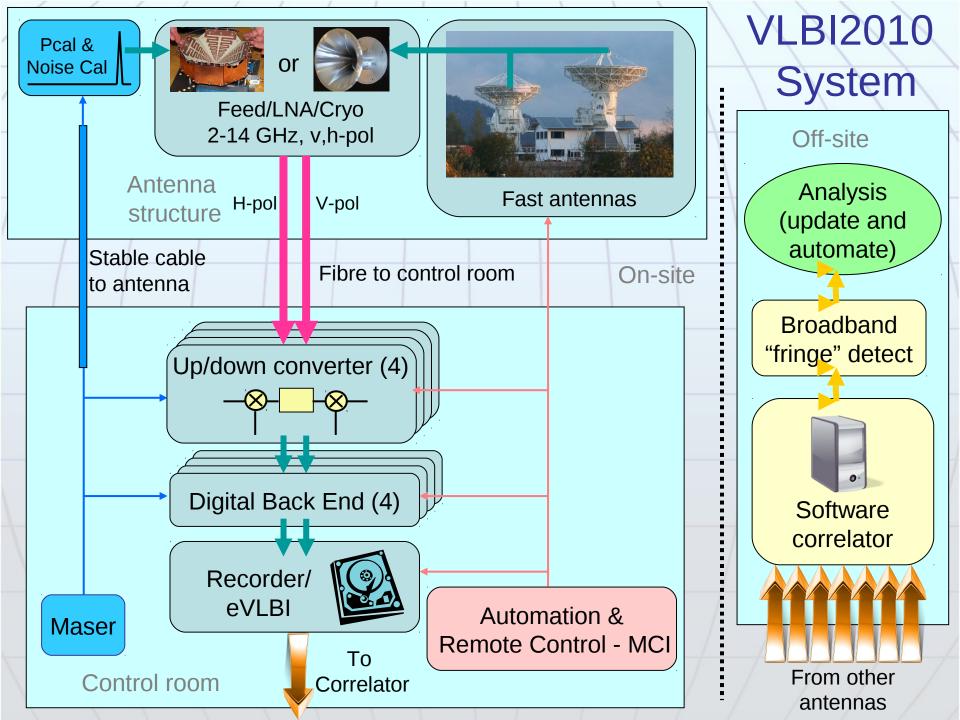
• Unprecedented, research

VLBI2010 Goals Continuous measurements of station position and EOP

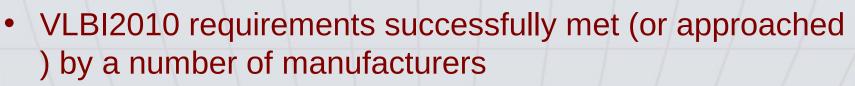

Increase automation
Reduce data shipping costs

Turnaround time to initial products < 24-hrs


• Use eVLBI

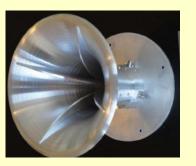

→ 🚺

Strategy for VLBI2010 Goal #1: 1-mm accuracy


Need short on-source times too

Antenna Progress

Diameter: > 12-m Efficiency: ~ 50% Surface: good to ~40-GHz Slew rate: > 12°/s az; > 4°/s el



- Vertex, MT Mechatronix, Intertronics

Feed/LNA Progress

Eleven Feed (~2009) Chalmers University

Quadruple-Ridged Flared Horn (QRFH), Caltech

- Improved Eleven Feed
 - Expected to meet VLBI2010 spec over full 2-14 range
 - One is built but not fully tested yet

• QRFH is new since 2010

- Simple to construct and robust; only one LNA per polarization
- Can be custom matched to an antenna
- Meets VLBI2010 spec: SEFD (2-14 GHz) ~ 2500-Jy
 - Under test on GGAO 'Patriot' antenna and Westford antenna

Calibration Progress

Phase/Pulse Calibration (PCAL)

- New PCAL generator (based on high speed digital components)
 - Well shielded and temperature regulated
- All tones are now detected in post processing

Cable Delay Calibration

- Very stable cables are available (e.g. LMR-400: 0.5-ppm/°K)
 - perhaps making calibration unnecessary
- Concepts for new Cable Cal systems are under study

Noise Calibration

 $-T_{Cal}$ set to ensure < 1% degradation of images

Flexible Down Converter

Haystack Up-Down Converter operational since 2007

Digital Back End (DBE)

• Two models have been built

- ROACH DBE (RDBE) by Haystack/NRAO/Goddard Group
 - Operational
- DBBC VLBI2010 by Gino Tuccari
 - Prototyped
- Other VLBI2010 DBE developments
 - Russia, China, Japan
- Inter-comparisons required
 - Sharing of FPGA algorithms perhaps useful
- Direct sampling DBBC3 under development

Recorder Progress

• Recorders now achieve 4-Gbps sustained data rates

- Mk5C is now operational at 4-Gbps
- Mk6 is under development
 - 16-Gbps capability demonstrated.
- Media requirements
 - Data volume for VLBI2010 with 30-s source switching:
 2880 * 5-s * 16-Gbps = ~ 29-Gbytes/day
 - Current largest disk packs: 8 * 2-Gbytes = 16-Gbytes
 - 2 disk packs needed per session

Correlator Progress

- First VLBI2010-capable correlator approaching β-testing stage at Haystack
 - Uses a DiFX core
 - Includes an interface between DiFX and the post processing fringing software
 - Post processing software includes
 - Estimation of the ionosphere delay
 - Optimal combination of linear polarizations
 - Detection of all Pcal tones

Analysis Progress

• First release of nuSOLVE available:

- Ambiguity resolution
- Outlier detection
- Automatic detection of clock breaks
- Ionosphere calibration
- VieVS
 - New MATLAB-based analysis software from Vienna
 - Efficient for prototyping new functions
- Multi-technique software
 - C5++

Scheduling Progress

Sked has evolved to handle many VLBI2010 needs

- VieVS is being actively used for scheduling research specifically for VLBI2010
 - Including antenna pairs

Automation Progress

On-site Automation

- Monitor/Control (MCI) definition under development
- Remote operation at some sites already a reality
 - Best known are the BKG sites: Wettzell, TIGO, and O'Higgins.

Analysis Automation

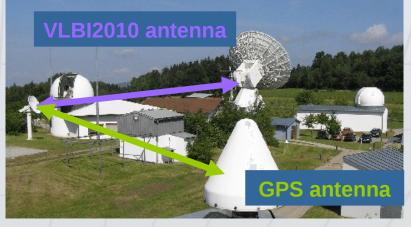
- From version 4 databases:
 - Intensives already very successful
 - Full sessions need more attention due to clock breaks, etc
- Broadband fringe processing eliminates Database processing steps
 - no more group delay ambiguities (due to detection of all Pcal tones)
 - ionosphere estimation already done

• Full VLBI2010 system automation important for future

Sked -> operations -> correlation -> "fringing" -> analysis -> database

Antenna deformations progress

Antenna deformations


- Mitigated by smaller VLBI2010 antennas
- Real time monitoring of reference point under development
- Complete gravitational models have been developed (in a few cases)

e.g. COLD MAGIC

Site ties

 Use of a small reference antenna under consideration

NASA Broadband Delay Proofof-concept Development Project

Purpose:

- Prove that Broadband Delay can be used operationally to resolve phase delay.
- Develop the first generation of VLBI2010 electronics.
- Gain experience with new VLBI2010 subsystems.

Status

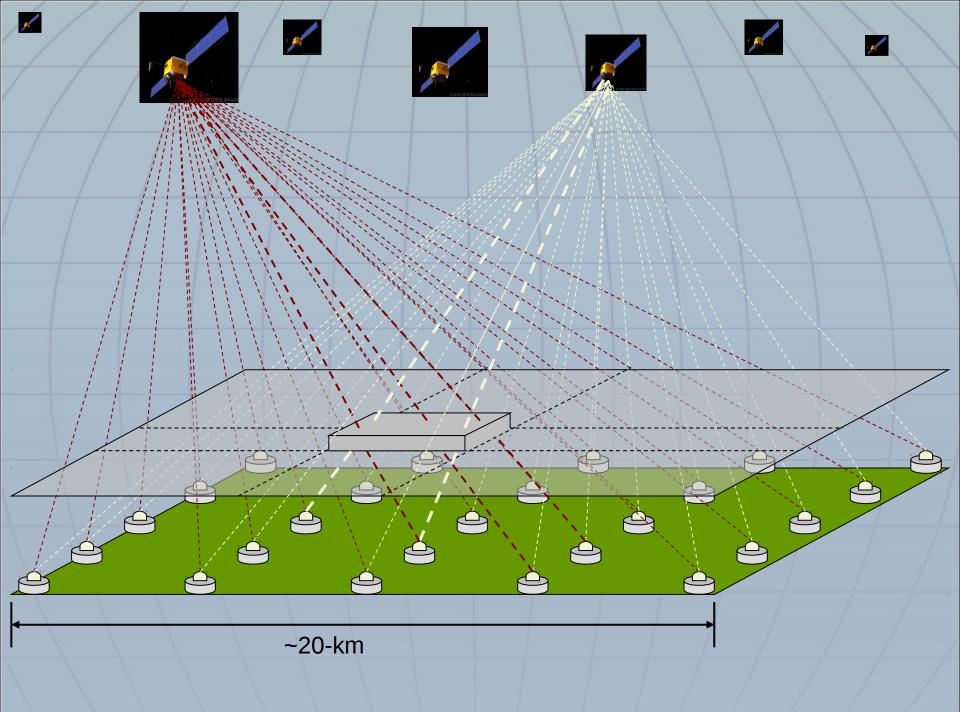
- Complete VLBI2010 systems on GGAO 'Patriot' antenna and on Westford antenna
- Ready for high sensitivity broadband / observations

12-m Patriot antenna at GGAO

Challenges (1)

RFI is a challenge for full 2-14 GHz operation

- Possible mitigation approaches
 - Electronics with wider dynamic range (currently fibre bottleneck)
 - Splitting of input range at fibre (e.g. 2-4 GHz; 4-14 GHz)
 - Custom filters


Source structure

- Should be enough low-structure sources for initial operations
- VLBA 4-8 GHz band (when it becomes available) could provide a development and testing opportunity for structure corrections

Challenges (2)

- Atmosphere remains the major error source for geodetic VLBI
 - CONT08 analysis indicates that atmosphere parameters used in original VLBI2010 Monte Carlo simulations are optimistic
- If we're serious about the 1-mm goal

– Are there alternate approaches for treating the atmosphere?

Conclusions

- Great progress has been made towards the realization of VLBI2010
- First "broadband" light on the Westford-to-GGAO baseline is eagerly awaited.