Radio Astrometry of Red Supergiant VY CMa using VLBA and VLA

Bo Zhang (MPIfR)

in collaboration with Mark J. Reid (CfA), Karl M. Menten (MPIfR) & X.W. Zheng (NJU)

March 7, 2011 Madrid, Spain

a VLBA Key Science Project

Friedrich Wilhem Bessel 1784 –1846

On the parallax of 61 Cygni (1838MNRAS...4..152B)

Structure and kinematics of the Milky Way?

We are inside the Milky Way.....

Find tracers of the arm structure and measure their distances to map the Milky Way.

Young stars HI, HII, CO

Luminosity distance: Extinction at optical wavelength Kinematic distance: Uncertain Galactic parameters, peculiar motion

Strong Astronomical Masers:

		First found	# known YSOs	# known AGB*
ОН	Hydroxyl (1.7 GHz)	1965	many	many
H ₂ O	Water vapor (22.2 GHz)	1969	very many	many
SiO	Silicon monoxide (43 GHz)	1974	3	very many
CH ₃ OH	Methanol (12.2/6.7 GHz)	1971/ 1986	very many	0

The Very Long Baseline Array (VLBA)

- Radio waves "see" through galaxy
- Can "synthesize" telescope the size of the Earth

Angular resolution:

 $\theta_{\rm f}$ ~ λ/D ~ 1 cm / 8000 km = 250 μ as

Centroid Precision:

 $0.5 \theta_{f} / SNR \sim 10 \mu as$

Systematics:

path length errors ~ 2 cm (~2 λ) shift position by ~ 2 θ_{f} ~ 500 μ as **Relative positions (to QSOs)**: $\Delta \Theta$ ~ 1 deg (0.02 rad)

cancel systematics: $\Delta \Theta * 2\theta_f \sim 10 \mu as$

VLBI (phase referencing) Trigonometric Parallaxes

http://veraserver.mtk.nao.ac.jp/outline/vera2-e.html

The Distance to the Perseus Arm: W3OH

Artist conception: Robert Hurt (NASA:SSC)

Distance estimates:

Kinematic = 4.3 kpc Photometric = 2.2 kpc (R. Humphreys 1970's)

Maser parallaxes: (2%)

CH₃OH 1.95±0.04 kpc

Xu et al. 2006

H₂O 2.04±0.07 kpc

Hachisuka et al. 2006

- $D_{photo} \sim D_{parallax}$
- D_k way off
- In Perseus Arm, not in Outer Arm
- Large peculiar V

Mapping the Milky Way (18 MSFRs)

Our proposed revision:

- Distance to Galactic Center $R_0 = 8.4 \pm 0.6 \text{ kpc}$
- LSR rotation speed: Θ_0 = 254 ± 16 km/s

15% faster than IAU value

Artist conception: Robert Hurt (NASA:SSC)

Reid et al. 2009

Project Team

SCHOOL OF SCIENCE THE UNIVERSITY OF TOKYO

Mapping the Milky Way (the latest)

 Preliminary results for 62 parallaxes from VERA, EVN & VLBA: blue (σ_d < 0.5 kpc)

green (σ_d > 0.5 kpc)

• Tracing outer spiral arms, W49 suggests Outer arm bends in more than in artist's model.

• Inner, bar-region is messy

Artist conception: Robert Hurt (NASA:SSC)

Reid et al. 2012

Radio Astrometry of VY CMa

the largest known star, one of the most luminous

Fundamental parameters of a star

- Distance
- Absolute position and proper motion
- Size
- Temperature
- Luminosity
- Mass

Optical observations

Hubble Faint Object Camera (FOC), removed in early 2002. Kastner & Weintraub 1998

Hubble WFPC2, Wide Field and Planetary Camera 2 Smith et al. 2001

From photosphere to circumstellar envelope

(M. J. Reid & K. M. Menten 1997)

Sky position of VY CMa

NGC2362: I.5 kpc (30%)

Credit: google sky

Hipparcos astrometic result

Proper motion:

Telescope	Epoch	R.A. (J2000)	Dec. (J2000)	μ_x	μ_y
		(h m s)	$\begin{pmatrix} \circ & \prime & \prime \prime \end{pmatrix}$	$({ m mas yr}^{-1})$	$(mas yr^{-1})$
$\operatorname{Hipparcos}^{a}$	1991.25	$07 \ 22 \ 58.3251 \ \pm \ 0.0001$	$-25 46 03.180 \pm 0.003$	$+8.86\pm1.34$	$+0.75\pm3.25$
$\operatorname{Hipparcos}^{b}$	1991.25	$07 \ 22 \ 58.3251 \ \pm \ 0.0002$	$-25 \ 46 \ 03.176 \ \pm \ 0.003$	$+5.72\pm2.01$	-6.75 ± 4.47

(a) Perryman et al. (1997).

(b) van Leeuwen (2007).

Parallax:

(a) 1.78 +/- 9.84 mas
(b) -4.35 +/- 4.99 mas

Observation I

Parallax and proper motion measurement: VLBI phase-referencing observation (43 GHz SiO maser)

Very Long Baseline Array (VLBA) /NRAO

Credit: VERA website/NAOJ

Observation II

Register SiO masers to radio photosphre: VLA 43 GHz continuum and line observation

(M. J. Reid & K. M. Menten 2007)

Observation epochs

Array	Code	Obs. date	Antennae used
VLBA	BR106A	2005OCT20	10
VLBA	BR106B	2006APR16	9
VLA	AR595	2006APR17	27
VLBA	BR106C	2006NOV29	10
VLBA	BR106D	2007APR27	10

VY CMa assuming D = 1.5 kpc

Source	R.A. (J2000)	Dec. (J2000)	T _b	θ_{sep}	P.A.	$V_{\rm LSR}$	Beam
	(h m s)	$(^{\circ} \ ' \ '')$	(Jy/b)	$(^{\circ})$	(°)	$(km s^{-1})$	(mas mas $^{\circ}$)
VY CMa	07 22 58.3283	-25 46 03.075	18 — 27			22	0.5 $ imes$ 0.2 @ -12
J0725-2640	07 25 24.4130	-26 40 32.680	0.03	1.1	+ 34		2.8 $ imes$ 0.6 @ -11
J0731-2341	07 31 06.6680	-23 41 47.869	0.06	2.8	+136		0.8 \times 0.3 @ +6

Table: Positions and Brightnesses

Spatial distribution of maser spots at all epochs (VLBA)

Parallax and proper motion

Parallax:

 $\Pi = 0.83 \pm 0.08$ mas $(1.20^{+0.13}_{-0.10}$ kpc) 43 GHz SiO maser, 4 epochs

Proper motion:

 $\mu_x = -2.21 \pm 0.06 \text{ mas y}^{-1}$ $\mu_y = +2.29 \pm 0.30 \text{ mas y}^{-1}$

Compared with VERA results based on H_2O maser (Choi et al. 2008)

Parallax:

 $\Pi = 0.88 \pm 0.08$ mas $(1.14^{+0.11}_{-0.09}$ kpc) 22 GHz H2O maser, 10 epochs

Proper motion:

 $\mu_x = -2.09 \pm 0.16 \text{ mas y}^{-1}$ $\mu_y = +1.02 \pm 0.61 \text{ mas y}^{-1}$

> Distance determined from color-magnitude diagram of NGC2362 1.5 +/- 0.5 kpc (Lada & Reid 1978)

Spatial distribution of maser spots at the second epoch

SiO maser spots and radio photosphere (VLA)

SiO maser distributions and derived star postions

Table 5							
Absolute Position and Proper Motion of VY CMa from Different Telescopes							

Telescope	Epoch	R.A. (J2000) (h m s)	Decl. (J2000) (°''')	μ_x (mas yr ⁻¹)	μ_y (mas yr ⁻¹)
<i>Hipparcos</i> ^a	1991.25	072258.3251 ± 0.0001	-254603.180 ± 0.003	$+8.86 \pm 1.34$	$+0.75 \pm 3.25$
Hipparcos ^b	1991.25	072258.3251 ± 0.0002	-254603.176 ± 0.003	$+5.72 \pm 2.01$	-6.75 ± 4.47
VERAc	2006.82	$07\ 22\ 58.3264\pm 0.000?$	$-254603.066\pm0.00?$	-2.09 ± 0.16	$+1.02 \pm 0.61$
VLBA ^d	2006.53	$07\ 22\ 58.3259\pm 0.0007$	-254603.070 ± 0.010	-2.21 ± 0.06	$+2.29\pm0.30$

Notes.

^a Perryman et al. (1997).

^b van Leeuwen (2007).

^c Choi et al. (2008a, 2008b), where the position uncertainty is unknown.

d This paper.

Summary

We have measured accurate absolute position, parallax and proper motion of VY CMa at radio wavelength, and found that the optical astrometric measurement of this star was problematic.

For details: Zhang et al. 2012, ApJ, 744, 23

Thank you for your attention!