Determination of Tsukuba VLBI station post-Tohoku earthquake coordinates using VieVS

Niko Kareinen, Minttu Uunila
Aalto University Metsähovi Radio Observatory
Overview

• Goals and strategy
• Analysis with VieVS
• Results and conclusions
• Further development
Goals

• Determination of initial and post-seismic displacement of Tsukuba VLBI station using VieVS
 – Displacement and coordinates for TSUKUB32
• Create an efficient tool to inspect coordinate time series to be used with VieVS result files
 – Possibility for future VieVS GUI implementation
• Find out possible ways improve VieVS in the process
Strategy

• Select an adequate number of 24-hour R1 sessions before and after the 11 March 2011 earthquake
 – Tsukuba included in R1 sessions
• Identify and deal with problematic sessions
• Try out different parametrizations
Analysis conditions and procedure

- Done with VieVS 1d
- A total of 32 R1 sessions from 2011-01-03 to 2011-09-12
- Modeling options

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TRF</td>
<td>VTRF2008</td>
</tr>
<tr>
<td>CRF</td>
<td>ICRF2</td>
</tr>
<tr>
<td>Ephemerides</td>
<td>JPL421</td>
</tr>
<tr>
<td>EOP</td>
<td>C04 08</td>
</tr>
<tr>
<td>Precession/Nutation</td>
<td>IAU2006/IAU2000</td>
</tr>
<tr>
<td>Tidal ocean loading</td>
<td>FES2004</td>
</tr>
<tr>
<td>Mapping function</td>
<td>VM1</td>
</tr>
</tbody>
</table>
Analysis conditions and procedure

• TSUKUB32 and TIGO removed from VTRF2008.mat
 – exclude TSUKUB32 and TIGO from NNR/NNT conditions for all epochs
 – excluded also before the earthquake for consistency
 – TIGO had noisy data -> removing TIGO in OPT-files decreased the std error of mean unit weight
 – Estimated parameters
 • Station position
 • clock parameter 60 min, relative constraint 0.5 ps²
 • ZWD, 20 min interval, relative constraint 0.7 ps²
 • Atmosphere gradient, 6h interval, relative constraints, 2mm/day
Analysis conditions and procedure

• Each session was first analyzed stationwise without main solution to remove clock breaks, bad baselines and other sources of error e.g. problems with a station

• OPT-files were created for each session. Example (11JAN18XA.OPT):

 CLOCK REFERENCE:
 WETTZELL
 STATIONS TO BE EXCLUDED: 1
 TIGOCONC
 CLOCK BREAKS: 2
 HOBART12 55580.265
 BADARY 55580.386

• One removed due to a crashing issue
 – 11SEP06XA_N004 -> index out of bounds error in Lagrange interpolation

• Main solution applied twice to every session to remove outliers

• - simple outlier test (5*mo)
• - 229 outliers removed
Visualization

• To visualize the resulting time series a Matlab tool was written
• Data initialization and collection (stationwise)
• Generates coordinate time series from the input of VieVS result directory and 8-letter IVS station name
 – e.g. timeseries('resultsdir','TSUKUB32')
 – Time series in ECEF and ENU coordinates
 – Corresponding series of standard error of mean unit weight for session
 – Possibility to divide data/timeseries to inspect a select interval(s)
TSUKUB32 ECEF

![Graph of TSUKUB32 ECEF data with X, Y, and Z axes labeled and DOY (Day of Year) on the x-axis. The graph shows variations in XYZ coordinates over time.]

Niko Kareinen, and Minttu Uunila
Metsähovi Radio Observatory

Aalto University
School of Electrical Engineering
TSUKUB32 ENU

Aalto University
School of Electrical Engineering

Niko Kareinen, and Minttu Uunila
Metsähovi Radio Observatory
Results and conclusions

• Five of the biggest aftershocks between 2011-04-07 and 2011-06-30 were pictured in the graphs

• From 6.1 to 7.1 Mb (body wave magnitude)

• They do not seem to correspond to any major changes in the solution
Aftershocks

TSUKUB32 and aftershocks

DOY

\[\Delta ENU \text{ (cm)} \]

- East
- North
- Up
- Aftershocks

Aalto University
School of Electrical Engineering

Niko Kareinen, and Minttu Uunila
Metsähovi Radio Observatory
Standard error of unit weight

A posteriori standard error of unit weight

DOY

Niko Kareinen, and Minttu Uunila
Metsähovi Radio Observatory
Results and conclusions

Based on the analysis of 31 sessions, the initial displacement of Tsukuba VLBI station was

<table>
<thead>
<tr>
<th>ΔX (cm)</th>
<th>ΔY (cm)</th>
<th>ΔZ (cm)</th>
<th>ΔE (cm)</th>
<th>ΔN (cm)</th>
<th>ΔU (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-36.9</td>
<td>-54.7</td>
<td>-2.4</td>
<td>65.6</td>
<td>2.0</td>
<td>-6.9</td>
</tr>
</tbody>
</table>

A priori coordinates + initial change

<table>
<thead>
<tr>
<th>X (m)</th>
<th>Y (m)</th>
<th>Z (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3957409.121</td>
<td>3310228.820</td>
<td>3737494.765</td>
</tr>
</tbody>
</table>
Postseismic movement

Postseismic movement: VLBI and GPS

\[\Delta ENU \, (\text{cm}) \]

\[\text{DOY} \]

Niko Kareinen, and Minttu Uunila

Metsähovi Radio Observatory
Results and conclusions

- Results agreed relatively well with analyses of displacement of Tsukuba in other publications.
- East and north components seem to have more stable movement.
- There was a clear postseismic movement in the coordinates:
 - Motion was most prominent in the East, to the direction of coseismic slip, in the region of 10-15cm over a period of 161 days.
 - Some postseismic movement to the South, under 5cm.
 - Relatively large variation of Up-component makes interpretation more difficult.

Niko Kareinen, and Minttu Uunila
Metsähovi Radio Observatory
Further development

• Further study to improve the estimates, especially the Up-component and some of the more problematic sessions
• Incorporate the time series tool created in the process to VieVS
• Create a more general visualization tool for plotting time series of all the geodetic parameters estimated by VieVS
• Develop the visualization tool to a standalone version with a more versatile language to get more flexibility and functionality
• Python + matplotlib + NumPy + SciPy
Thank you!