The Spanish-Portuguese contribution to GGOS

Jesús Gómez González. National Geographic Institute (IGN) Spain

Marlene C.S. Assis.

Directorate of Sciences, Technology and Communications (DRCTC). Portugal

Content

Goal of the presentation

- 2. What are
 - IGN / DRCTC
 - <u>GGOS</u> (in connection with IGN/DRCTC)
- 3. The project RAEGE
- 4. Scientific, Technical and political reasons for RAEGE
- 5. RAEGE interest in having the frame of GGOS

Goal of this presentation:

To show you the scientific, technical and political reasons which have moved the <u>National Geographic Institute of</u> Spain_(IGN) and the Directorate for Science, Technology and Communications (DRCTC) of the Regional Goverment of Açores (Portugal) to launch the project <u>RAEGE</u>, in the frame of GGOS.

National Geographic Institute (IGN) / Royal Observatory of Madrid (ROM)

IGN

<u>Present activities and projects</u>

Dept. Astronomy and Geophysics

Dept. Geodesy and Cartography

<u>Directorate of Science, Technology and Communications (DRCTC) of the Regional Government of Azores (Portugal)</u>

- Misions and responsabilities:
 - Cartography
 - Geodesy
 - Seismic hazards
 - Volcanic hazards

Global Geodetic Observing System (GGOS)

(Officially adopted by the Global Geodetic Observing System Steering Committee 21st Meeting, on July 2, 2011)

Vision

Advancing our understanding of the dynamic Earth system by quantifying our planet's changes in space and time

Mission

- To provide the observations needed to monitor, map and understand changes in the Earths's shape, rotation and mass distribution.
- To provide the <u>global frame of reference</u> that is the fundamental backbone for measuring and consistently interpreting key global change processes and for many other scientific and societal applications.
- To benefit science and society by providing the <u>foundation</u> upon which advances in Earth and planetary system science and applications are built.

<u>Goals</u>

- 1. To be primary source for all global geodetic information and expertise <u>serving society and Earth system science</u>.
- To actively promote, sustain, improve and evolve the global geodetic infrastructure needed to <u>meeting Earth science and</u> <u>societal requirements.</u>
- To coordinate the international geodetic Services that are the main source of key parameters needed to <u>realize a stable global</u> <u>frame of reference</u> and to observe and study <u>changes in the</u> <u>dynamic Earth system</u>.
- 4. To communicate and advocate the benefits of GGOS to <u>user</u> <u>communities</u>, <u>policy makers</u>, <u>funding organizations</u>, <u>and society</u>.

GGOS Instrumentation: 5 Levels of Objects

Rothacher M., Neilan R. and Plag H-P. (2008)

Level 1: Ground-Based Component

Rothacher M., Neilan R. and Plag H-P. (2008)

Future Core Ground-Based Infrastructure

Core Network (~ 40 Stations):

- 2-3 VLBI telescopes for continuous observations
- SLR/LLR telescope for tracking of all major satellites
- At least 3 GNSS antennas and receivers (controlled equipment changes)
- **DORIS beacon** of the most recent generation
- Ultra-stable oscillator for time and frequency keeping and transfer
- Terrestrial survey instruments for permanent/automated local tie monitoring
- Superconducting and absolute gravimeter (gravity missions, geocenter)
- Meteorological sensors (pressure, temperature, humidity)
- Seismometer for combination with deformation from space geodesy and GNSS seismology
- Additional sensors: water vapor radiometer, tilt-meters, gyroscopes, ground water sensors, ...

General Characteristics: highly automated, 24-hour/365 days, latest technologies

Rothacher M., Neilan R. and Plag H-P. (2008)

The RAEGE project

Establishment of an Spanish-Portuguese Network of Geodynamical and Space Geodesy Stations (RAEGE) by the installation and operation of four fundamental geodetic stations provided with radio telescopes fulfilling the VLBI 2010 project specifications: Yebes (1), Canary Islands (1) and Açores Islands (2).

Baselines:

- · Yebes Tenerife: 1800 km
- · Yebes Santa María: 2000 km
- · Yebes Flores: 2400 km
- · Tenerife Flores: 2000 km
- · Santa María Flores : 540 km

Initial equipment to be installed at each RAEGE station

- Geodetic VLBI 2010 radio telescope:
 - Diameter > 13 m, freq > 45 GHz
- Gravimeter.
- Permanent GNSS station.
- Satellite Laser Ranging (Yebes).

New VLBI2010 RAEGE radio telescope by MT Mechatronics including geodetic capabilities set by IGN

Characteristics:

- · 13.2 m RT, ring focus, v > 45 GHz (90 GHz)
- · S/X and (future) wide band feeds
- · 12º/sec (az) & 6º/sec (el) slew speeds

CRYOSTAT 3dB/180° LNA_S1 S1 3dB/90° S/RHCP COUP_SR SR HYB1 COUP_SL S/LHCP SL LNA_S2 3dB/180° HYB2 Tri-Band LNA_Ka1 Coax Ka/RHCP Feed Coupler Ka/LHCP KaL LNA_Ka2 HYB4 3dB/180° X2 LNA_X1 COUP_XR 3dB/90° X/RHCP **≯** XR X/LHCP XL HYB6 COUP XL X4 • LNA_X2

HYTH-RISK-INI 887HO.111

VLBI2010 developments

- Receivers
- Optics and feeds (S/X/Ka)

Scientific, technical and political reasons for RAEGE

Scientific reasons:

IGN / DRCTC are in charge of services in the fields of:

- Geodesy / Cartography
- Seismic harzads
- Volcanic hazards

Better service <u>Scientific studies and research</u>

Scientific studies and research of interest

. VLBI

- Global Geodynamics
- Earth rotation
- _ ITRF
- Sea level change (continent, islands)

. GNSS

- Regional Geodynamics (Azores, Canaries)
- Volcanic monitoring and warning.

. Gravimetry

- _ Absolute
- Superconducting

. SLR

Yebes. Geodetic Fundamental Station

RAEGE

Technical reasons:

Development of Technology / Instrumentacion

- Ø Radioastronomical techniques
 - Antennas (radio telescopes, feeds, holography,....)
 - Receivers (front-ends, back-ends, components)
- Ø <u>Techniques of electronics, microwaves, informatics, communications.</u>

<u>RAEGE</u>

- · Political reasons:
- ø Economical development through Scientific Research & Technical Development.
 - High qualified engineers and scientists for society
 - Technology transfer to companies
- Ø Iberic (Spain-Portugal) cooperation / European cooperation.
- Ø International cooperation at a global level
- Ø Special projection to Iberoamerica

The frame of GGOS (VLBI2010) Interest for RAEGE

- Added value to our works and activities(because of the integration in a global project)
- 3. Advantages in development of instrumentation.
 - Better prices (ex. RAEGE antennas in connection with the Twin Telescope Wettzell)
 - Know-how transfer between institutions
 - Possibility of coordination in the technical developments.

The frame of GGOS (VLBI2010) Interest for RAEGE

- 3. Advantages in operation
 - Regional operation of installations (Wettzell, Yebes, TIGO...)
- Greater guarantee for the continuity of activities (financing compromise of Governments, ...?)
- 6. Broadening of the Scientific activities field.

NOVEMBER 5, 2011