

## 32 GHz Celestial Reference Frame Survey for Dec < -45 deg

Shinji Horiuchi, Canberra Deep Space Communications Complex/NASA/CSIRO Chris Jacobs, NASA JPL/Caltech Chris Philips, Australian Telescope National Facility(ATNF)/CSIR Ioana Sotuela, Cristina Garcia-Miro Madrid Deep Space Communications Complex/NASA

## Outline

- Aim and Motivation
- Long Baseline Array (LBA), recent highlight, 32 GHz capability
- Source Selection
- Observational Strategy
  - Fringe test
  - Proposal
  - · TAC review outcome
- Future challenges and plan



# **Celestial Frame needs the South**

 Almost No current Ka sources meet ΔDOR accuracy goal south of equator!

### Current DSN X/Ka Frame



- No coverage of South polar cap (-45 to -90 Dec)
- DSN weakly covers southern Ecliptic: only one strong baseline as California-Spain is weak in south

### Declination 1-sigma Uncertainty

Orange: 0.5 nrad meets future  $\Delta$ DOR spec Red: < 1.0 current  $\Delta$ DOR spec Green: < 1.5 Blue: < 2.5 Purple: < 5.0 White: > 5.0

## Aim and Motivation

- DSN has also been developing a catalogue at 32 GHz (Ka-band) with its internal network of 34m Beam Wave Guide antennas that includes DSS-34 in Tidbinbilla (Jacobs et al. 2011). However, the DSN VLBI network alone can only cover limited part of the full sky, missing in the declination range from -45 to -90 degree.
- The ultimate goal of our project is to establish a reference source catalogue at 32 GHz for the south polar cap region, which has never been covered in existing catalogues at that frequency.
- Toward this goal we need to first establish a list of sources that VLBI can detect fringes. A pilot survey within Australian baselines will allow us to select sources as well as obtain positions of sources to an order of 1 milli-arcsecond accuracy.

### I LBA observations



# Long Baseline Array (LBA)





# The Australian Long Baseline Array













Parkes (64)

ATCA (5x22m)

Mopra (22m)

Hobart (26m)

Ceduna (30m)

Tidbinbilla (70m or 34m), all in Australia,

Hartebeesthoek (26m) , South Africa (Sep2008)

TIGO (6m), Chile

O'Higgins (9m), Antarctica, also NZ, AuScope, ASKAP as new elements





## Standard LBA Mode

#### Supported LBA S2 Configurations for SCHED

Listed in the table below are the recommended standard configurations for LBA observations. All of these configurations are available as <u>NRAO SCHED</u> setup files on the ATNF UNIX machines. They are also available here: <u>Iba setup.tar.gz</u>. If the desired configuration is not present please contact the <u>VLBI observers</u> for help.

N.B. These S2 configurations are used with the disk LBADR system, until updated configurations can be ported into the SCHED software package.

| Configuration  |                           |                    |              | Antenna<br>(y/n indicates if the configuration is supported). |              |               |                    |                    |               |               |                       |
|----------------|---------------------------|--------------------|--------------|---------------------------------------------------------------|--------------|---------------|--------------------|--------------------|---------------|---------------|-----------------------|
| Name           | Frequency range<br>(MHz)  | Bandwidth<br>(MHz) | Polarisation | ATCA<br>6 x 22m                                               | Mopra<br>22m | Parkes<br>64m | Tid 70m<br>(DSS43) | Tid 34m<br>(DSS45) | Hobart<br>26m | Ceduna<br>30m | Hartebeesthoek<br>26m |
| lba21cm-2p-1IF | 1392 - <mark>1</mark> 408 | 16                 | dual         | У                                                             | У            | У             | n                  | n                  | у             | n             | n                     |
| lba21cm-1p-2IF | 1384 - 1416               | 2 x 16             | LCP          | У                                                             | У            | у             | n                  | n                  | у             | n             | n                     |
| lba18cm-2p-1IF | 1642 - 1658               | 16                 | dual         | у                                                             | У            | у             | n                  | n                  | у             | n             | у                     |
| lba18cm-1p-2IF | 1634 - 1666               | 2 x 16             | LCP          | у                                                             | У            | у             | у                  | n                  | у             | n             | у                     |
| lba13cm-2p-1IF | 2274 - 2290               | 16                 | dual         | У                                                             | У            | у             | у                  | n                  | у             | у             | у                     |
| lba13cm-1p-2IF | 2252 - 2284               | 2 x 16             | RCP          | У                                                             | У            | у             | у                  | у                  | у             | у             | у                     |
| lba6cm-2p-1IF  | 4808 - 4824               | 16                 | dual         | У                                                             | У            | у             | n                  | n                  | у             | у             | у                     |
| lba6cm-1p-2IF  | 4800 - 4832               | 2 x 16             | RCP          | у                                                             | У            | у             | n                  | n                  | у             | у             | у                     |
| lba5cm-2p-1IF  | 6492 - 6508               | 16                 | dual         | У                                                             | У            | у             | n                  | n                  | у             | у             | у                     |
| lba5cm-1p-2IF  | 6484 - 6516               | 2 x 16             | RCP          | У                                                             | У            | у             | n                  | n                  | у             | у             | у                     |
| lba3cm-2p-1IF  | 8417 - 8433               | 16                 | dual         | У                                                             | У            | у             | у                  | n                  | у             | у             | у                     |
| lba3cm-1p-2IF  | 8409 - 8441               | 2 x 16             | RCP          | У                                                             | У            | У             | у                  | у                  | у             | у             | у                     |
| Iba12mm-2p-1IF | 22192 - 22208             | 16                 | dual         | У                                                             | У            | у             | n                  | n                  | У             | у             | n                     |
| Iba12mm-1p-2IF | 22184 - 22216             | 2 x 16             | LCP          | У                                                             | У            | у             | у                  | n                  | у             | у             | n                     |

Backend – LBADAS, LBA-DR (with AppleXraids) @ 256 MBps (512 MBps) eVLBI is possible for some stations



# LBA observing time (in hrs) by year and band

|       | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 |
|-------|------|------|------|------|------|------|------|------|
| 20cm  | 36   | 37   | 107  | 142  | 58   | 65   | 44   | 20   |
| 13cm  | 64   | 44   | 54   | 91   | 51   | 11   | 37   | 70   |
| 6cm   | 22   | 60   | 42   | 14   | 65   | 95   | 88   | 72   |
| 3cm   | 98   | 192  | 127  | 99   | 226  | 168  | 290  | 247  |
| 1cm   | 24   | 0    | 12   | 21   | 105  | 57   | 60   | 54   |
| total | 244  | 333  | 341  | 366  | 505  | 396  | 519  | 463  |



## **Recent LBA publications**

- The first resolved imaging of milliarcsecond-scale jets in Circinus X-1 (Miller-Jones et al. 2012 MNRAS 419, L49)
- e-VLBI observations of Circinus X-1: monitoring of the quiescent and flaring radio emission on AU scales (Moin et al. 2011 MNRAS 414, 3551)
- Dual-frequency VLBI study of Centaurus A on sub-parsec scales. The highest-resolution view of an extragalactic jet (Muller et al. 2011 A&A 530, L11)
- Maser maps and magnetic field of OH 337.705-0.053 (Caswell et al. 2011 MNRAS 415, 3872)
- First geodetic observations using new VLBI stations ASKAP-29 and Warkworth 12m (Petrov et al. 2011 PASA 28, 107)
- Magnetic fields from OH maser maps at 6035 and 6030 MHz at Galactic sites 351.417+0.645 and 353.410-0.360 (Caswell et al. 2011 MNRAS 414, 1914)
- First VLBI Detection of the Radio Remnant of Supernova 1987A: Evidence for Small-scale Features (Ng et al. 2011 ApJ 728, L15)
- The LBA Calibrator Survey of southern compact extragalactic radio sources LCS1 (Petrov et al. 2011 MNRAS 414, 2528)
- Discovery of extended and variable radio structure from the gamma-ray binary system PSR B1259-63/LS 2883 (Moldon et al. 2011 ApJ 730, L1)



## **TANAMI-LBA** project to track FERMI targets

### Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry



LBA Monitor at 8/22 GHz (vs. MOJAVE at 15 GHz with VLBA)



# TANAMI subsample - Centaurus A

- VSOP (Horiuchi et al. 2006) TANAMI (Müller et al. 2010) observations separated by 10 years
- similar structure!
- previous apparent velocity ~
  1.4mas (Tingay et al. 2001)
  detailed velocity information from TANAMI monitoring





## eVLBI Connectivity to Tidbinbilla

2009 June 15, the first real-time VLBI fringes to Tid (with Mopra, 32Mbps, 16MHz/1ch BW, correlated at Parkes) First ever eVLBI fringes to DSN!

Current network speed and download limit are not good for practical eVLBI

Discount of the second second

•





## Standard LBA Mode

#### Supported LBA S2 Configurations for SCHED

Listed in the table below are the recommended standard configurations for LBA observations. All of these configurations are available as <u>NRAO SCHED</u> setup files on the ATNF UNIX machines. They are also available here: <u>Iba setup.tar.gz</u>. If the desired configuration is not present please contact the <u>VLBI observers</u> for help.

N.B. These S2 configurations are used with the disk LBADR system, until updated configurations can be ported into the SCHED software package.

| Configuration  |                           |                    |              | Antenna<br>(y/n indicates if the configuration is supported). |              |               |                    |                    |               |               |                       |
|----------------|---------------------------|--------------------|--------------|---------------------------------------------------------------|--------------|---------------|--------------------|--------------------|---------------|---------------|-----------------------|
| Name           | Frequency range<br>(MHz)  | Bandwidth<br>(MHz) | Polarisation | ATCA<br>6 x 22m                                               | Mopra<br>22m | Parkes<br>64m | Tid 70m<br>(DSS43) | Tid 34m<br>(DSS45) | Hobart<br>26m | Ceduna<br>30m | Hartebeesthoek<br>26m |
| lba21cm-2p-1IF | 1392 - 1408               | 16                 | dual         | у                                                             | У            | У             | n                  | n                  | У             | n             | n                     |
| lba21cm-1p-2IF | 1384 - 1416               | 2 x 16             | LCP          | у                                                             | У            | У             | n                  | n                  | у             | n             | n                     |
| lba18cm-2p-1IF | 1642 - 1658               | 16                 | dual         | у                                                             | У            | У             | n                  | n                  | у             | n             | у                     |
| lba18cm-1p-2IF | 1634 - <mark>1</mark> 666 | 2 x 16             | LCP          | у                                                             | У            | У             | у                  | n                  | у             | n             | у                     |
| lba13cm-2p-1IF | 2274 - 2290               | 16                 | dual         | у                                                             | У            | у             | у                  | n                  | у             | у             | у                     |
| lba13cm-1p-2IF | 2252 - 2284               | 2 x 16             | RCP          | у                                                             | У            | У             | у                  | у                  | у             | у             | у                     |
| lba6cm-2p-1IF  | 4808 - 4824               | 16                 | dual         | у                                                             | У            | у             | n                  | n                  | у             | у             | у                     |
| lba6cm-1p-2IF  | 4800 - 4832               | 2 x 16             | RCP          | у                                                             | У            | у             | n                  | n                  | у             | у             | у                     |
| lba5cm-2p-1IF  | 6492 - 6508               | 16                 | dual         | у                                                             | У            | У             | n                  | n                  | у             | у             | у                     |
| lba5cm-1p-2IF  | 6484 - 6516               | 2 x 16             | RCP          | у                                                             | У            | У             | n                  | n                  | у             | у             | у                     |
| lba3cm-2p-1IF  | 8417 - 8433               | 16                 | dual         | у                                                             | У            | у             | у                  | n                  | у             | у             | у                     |
| lba3cm-1p-2IF  | 8409 - 8441               | 2 x 16             | RCP          | у                                                             | У            | у             | у                  | у                  | у             | у             | у                     |
| Iba12mm-2p-1IF | 22192 - 22208             | 16                 | dual         | у                                                             | У            | У             | n                  | n                  | у             | у             | n                     |
| Iba12mm-1p-2IF | 22184 - 22216             | 2 x 16             | LCP          | у                                                             | У            | У             | у                  | n                  | у             | у             | n                     |

Backend – LBADAS, LBA-DR (with AppleXraids) @ 256 MBps (512 MBps) eVLBI is possible



## LBA 32GHz capability – to be tested

- Mopra is also available for observations in the 15-mm (16-27 GHz) 7mm (30-50 GHz) and 3-mm (76-117 GHz) bands.
- ATCA Observing is possible with the standard 15-mm (16-25 GHz) and 7-mm (30-50 GHz) systems on all six antennas, and 3-mm systems (83.5-106 GHz) on five antennas.
- DSS-34 Ka-band coverage is 31.910 32.190 GHz.

Ka-Baseline Sensitivity (for 1min integration), Max Resolution

- ATCA-Mopra (120 km): 10 mJy, 20 mas
- ATCA-DSS-34 (569 km): 5 mJy, 4 mas
- Mopra-DSS-34 (456 km): 10 mJy , 5 mas

(cf. http://www.atnf.csiro.au/vlbi/calculator\_2009/)



# **Source Selection**



## Source selection for South Pole pilot survey

- Based on ATCA Survey at 20,8.6, and 4.8 GHz (AT20G by Murphy et al. 2010) – 5890 sources
- 531 sources with X-band flux density > 200mJy with percentage of unresolved component > 70 percent
- Among the 531 sources, 268 were detected at 20 GHz
- Finally, total number of south pole (Dec<-45 deg) candidate sources is 144.
- This includes 46 ICRF2 sources (with 29 "Defining" objects)



# Fringe Test



## First fringe test – 2011 Dec 02, 1921-293

- · Mopra DSS-34 Canberra
- Central frequency- 32000.00MHz
- 2 IF x16MHz bandwidth
- single polarization
- No fringe was detected





## 2nd fringe test - 2012 Feb 7 & 9, 0537-441

- · ATCA Mopra & DSS-34 Mopra
- Central frequency- 32000.00MHz
- 2 IF x64MHz bandwidth
- Dual polarizations (except DSS-34)

```
No fringe
was detected
```



# However, LBA Proposal



## LBA Proposal (submitted 15 Dec 2011)

32 GHz Celestial Reference Frame Survey for Dec < -45 deg.

P.I. Shinji Horiuchi, Co-Is: Chris Jacobs, Chris Phillips, Ioana Sotuela, Cristina Garcia-Miro Requested time: 24 hour ATCA – Mopra + DSS-34

Time Assignment Committee (TAC) Outcome (came last week) TAC Rate: 4.3/5.0

## TAC Comments:

"A good reference frame at 32 GHz is needed for spacecraft navigation and a high precision GAIA frame-tie. This proposal is an initial step in the south by using AT-Mp to filter candidate sources for further study: a sensible first step."



## Future challenges

## Toward first fringes

- Because 32 GHz is not yet a standard LBA mode we need to establish the way to get fringes before the pilot survey
- Schedule gaps during and outside of regular LBA sessions are utilised
- The first LBA 24 hour session (if scheduled during a normal LBA session)
  - Hold as much as possible DSS-34 schedule to overlap with ATCA-Mopra observation
- Future ATNF operational change may affect
  - To seek funding to complete ASKAP, Mopra may not be available in near future.....(so as Parkes S/X for IVS community!)
- Toward establishing new Ka-band global network See poster by Chris Jacobs et al. (2.18)



## The Potential for a Ka-band (32 GHz) Worldwide VLBI Network (poster 2.18)



### Shinji Horiuchi

## Thank you!

### Email: shoriuchi@cgscc.nasa.gov

