A study of a RF (radio frequency) direct sampling technique for the geodetic VLBI

NICT : K. Takefuji, T. Kondo, M. Sekido, R. Ichikawa GSI : S. Kurihara, K. Kokado, R. Kawabata

Contents

- 1. What is a RF direct sampling?
- 2. We develop a new technique DSAMS.
- 3. The geodetic VLBI with the DSAMS.
- 4. Summary

DSAMS = "Direct Sampling Applied for Mixed Signals "

A RF direct sampling

- 1. Never down-convert by analog mixers
- 2. A digital sampler which has a high frequency capability is a most important key
- Four necessary components
 - Antennas, LNAs, the samplers, and(or) optical converters

We need optical converters in case of the RF signal transfer (Antenna -> lab)

Developments in Japan have the RF direct sampling realize now

Sampler ADX831 (ADX series)

- Elecs Industry corp.
- DC 30GHz
- Max 8Gsps*3bit (decimators inside)
- 10GbE connections

Optical converter E18000

- Toyo technica corp.
- High stability and Low loss
- Wide dynamic range : Possible to transfer directly the RF signal just after LNA (DC - 18GHz)

A FRING TEST WITH THE RF DIRECT SAMPLING

Installation of the RF direct sampling system

Figure shows the inside of a Kashima11m antenna cabin

No amplifiers after LNAs

• The RF signal is directly transferred to our lab

According to the Nyquist sampling theorem, it is a necessary to sample at an 18GHz speed to detect a Xband(9GHz).

But we use only an 1GHz sampling speed!! This is called an under sampling or a high order sampling.

A rule of sampling

- By digital signal textbooks, "Insert an antialiasing filter to prevent from an aliasing of folded signals"
- You can not make a aliased signal restore to the original signal without anti-filter

The RF direct sampling without Filter in case of 1024MHz speed

Increase Tsys! and Decrease fringe amplitude

Okay, Take it easy!

It's a just fringe test!

We will cover this loss with a sufficient integration time !

. . .

You can see this figure in 2011 IVS Annual report

We have doubts about ...

Let's perform correlation to each band properly!

Detected fringes of the mixed X-bands The first in the world!?

A new VLBI technique has created!?

- We named this technique "**DSAMS**"
- The DSAMS means "Direct Sampling Applied for Mixed Signals "
- Next, The DSAMS will be applied for a conventional S/X geodetic VLBI
- The S and X-band are mixed in the RF signal, and are sampled as a single analog stream.

The mixed signal was transferred as the remaining RF signal

First fringes in DSAMS Use of the Kashima11m (NICT) and the Tsukuba32m (GSI) in 24hours geodetic VLBI

Correlation by the GICO3

- Four fringes were detected from single data.
- Four fringes = One S-band, Three X-bands

Average In 945scan	S	X-low	X-mid	X-high					
SNR	117.2	65.6	145.7	77.7					
Ionosphere Bandwidth synthesis correction									

Bandwidth synthesis (BWS)

VIDEO CROSS SPECTRUM RF= 7168.C MHz (POWER)

- Phase differences
 of band edge were
 Zero, to extend
 bands were quite
 simple
- An improved bandwidth can cancel out the decreased SNR, BWS: 11.7%1

Band pass calibration (BPC)

VIDEO CROSS SPECTRUM RF= 7168.0 MHz (POWER)

VIDEO CROSS SPECTRUM RF= 7168.0 MHz (POWER)

- Phases in all scans were calibrated by fringe phase of a strong radio source.
- after BPC improves SNR
 - > BWS & BPC : 24.0%↑ (which compared with X-mid)

Results of a baseline analysis

Code	Only x-mid		BWS		BWS		BWS&BPC		BWS&BPC	
lono- correction	No		Yes		No		Yes		No	
Baseline length(mm)	2.71	± 0.94	1.87	± 1.04	2.81	± 0.998	1.71	± 0.94	2.68	± 0.94

%baseline lengths have an offset of 53812800mm

Compared above conditions are consistent previous experiments and almost same (A limitation by an atmosphere??)
Ionosphere correction is effective even 50km of Kashima-Tsukuba baseline (only 1mm)

Summary

- We detected the first fringe with the RF direct sampling
- We developed the DSAMS as new VLBI technique,
 - Correlation, BWS, BPC
- We applied the DSAMS to geodetic S/X VLBI and could obtain baseline even the combined S+X
- We believe the DSAMS VLBI is a simple, reliable, inexpensive.

Future work

- Will we apply the DSAMS to e-VLBI, VLBI2010?
- How about the DSAMS to RAEGE and other X/Ka system?

