Warkworth geodetic station as a potential GGOS core site in New Zealand

Institute for Radio Astronomy and Space Research
Auckland University of Technology
New Zealand

<u>Hiroshi Takiguchi</u>, Sergei Gulyaev, Tim Natusch, Stuart Weston, Lewis Woodburn

Contents

- ♦ Recent activities of AUT
 - IVS, 30m antenna, SKA, Geodetic experiments
- ♦ Contribution of Warkworth
 - ♦ New Zealand geodesy
- Improving the estimation of the ocean tide loading displacement at Warkworth

Recent activities of AUT 1/4

WARK12M

- ♦ Ww 12m radio telescope
 - ♦ Launched on October, 2008
 - Participate in the global IVS sessions regularly since the beginning of 2011

http://www.hat-lab.com/, http://www.haystack.mit.edu/http://www.symmetricom.com/

Recent activities of AUT 2/4

- ♦ 30m Antenna
 - ♦ November 2010, Telecom NZ handed over a 30m antenna to AUT
 - ♦ Manufactured in 1984 by NEC
 - ♦ Located 200m north of WARK12M
 - Conversion to Radio Telescope: Installation of drive and RF systems

for Astronomy and Geodesy

Recent activities of AUT 3/4

♦ Big Step Forward for the SKA

July 2011

Successful demonstration of real time eVLBI between WARK12M and Australian telescopes

Sustained data rates of 520Gb/s

Recent activities of AUT 4/4

- Establishment of the geodetic experiment environment
 - ♦ Ultra-rapid EOP measurement

Baseline length Ww-Ts 8,105 km Ww-K1 8,075 km

Correlation processing Bandwidth synthesizing Data analysis

Crustal deformation in NZ

Uplift @Southern Alps 5 ±0.6 mm/year

Tectonic plate motion 30 – 50 ±0.4 mm/year

22 Feb, 2011 Canterbury earthquake

Space geodesy @ NZ

- ♦ before launch of VLBI

- PositioNZ by LINZ (Land Information New Zealand)
 - about 30 (2:Chatham Islands, 3: Antarctica)
 - Geodetic system, NZGD2000, surveying, mapping

GeoNet by Earthquake Commission & GNS Science

- to monitor earthquakes, volcanic unrest, land deformation, geothermal activity and tsunami
- seismometer, accelerometer, tide gauge, sea level pressure
- GPS: active volcanic zone, over 100

Global Geodetic Observing System

♦ GGOS aims:

- accuracy of < 1 mm for position
- accuracy of < 0.1 mm/yr for velocity
- by using and integrating advanced geodetic observing techniques

Warkworth

has capability to became a core site

Important contribution to geometrical distribution

"Call for Participation"

Ww contribute to NZ geodesy Ww become a core site

Gravity measurement in NZ

- There are no Absolute Gravimeters or Superconducting Gravimeters
 - ♦ Observation
 - **♦** Christchurch
 - ♦ Southern Alps

- Absolute gravity base station must be in **North Island**
- monitoring : volcano, uplift, etc.
- continuous measurement
- co-located multiple geodetic techniques

http://www.gns.cri.nz/

http://www.microglacoste.com/

http://www.gwrinstruments.com/

dream

A plan about contribution of Ww

- - Ww has 2 of the 4 space geodetic techniques
 - Local Survey Ground Monuments

2nd GNSS at Ww

2nd VLBI station with GNSS in the South Island

SLR station

Gravity base station AG or SG

To make a core site

- ♦ Stable results
 - ♦ Make an appropriate model

 - ♦ Ocean Tide Loading
 - ♦ assistance observation
 - Groundwater,
 Soil moisture, etc.
 - Cooperation with other institutes
 - - ♦ LINZ and GNS Science

"Site Requirements for GGOS Core Sites"

Ocean tide loading displacement

- ♦ To compute the OTL displacement

 - ♦ 342/141 constituent tides
 - ⇒ spline interpolation based on 11 main tides
- To calculate site-dependent tidal coefficients

- 2. Green's function
- 3. land-sea grid
- 4. Convolution [Farrell, 1972]

Onsala Space Observatory
- Ocean Tide Loading provider

http://froste.oso.chalmers.se/loading//index.html

http://www.niwa.co.nz/

http://volkov.oce.orst.edu/

Calculate OTL displacement

site-dependent tidal coefficients of 11 main tides @Warkworth

software	OTL provider	GOTIC2
OT model	NAO99b	
Earth model	Gutenberg-Bullen	
Land-sea grid	600m	90m

- ♦ Calculate OTL displacement
 - \diamond c5++ software
 - ↑ 1 year (2011) every 12h
 - ♦ NS, EW, UP

http://www3.nict.go.jp/w/w114/stsi/c5++/

Results: OTL displacement @Ww

- OTL providerthis study
 - ♦ IERS Conv. 2003

- ∀ertical: ± 2 mm

Not small for 1mm accuracy!

Unit: mm

Conclusion

AUT radio telescope is ready to contribute to New Zealand and global geodetic research

- AUT started discussing with related institutes in New Zealand to establish a fundamental geodetic station at Warkworth

 get a budget
- ♦ Calculated and compared OTL displacements @Ww
 - - not small compared to <u>1mm accuracy</u>.

- ✓ apply to geodetic analysis
- ✓ evaluate the effect

Thank you very much for your attention.

Thanks to Neville Palmer, Dave Collett, Oleg Titov, Hans-Georg Scherneck, GOTIC2 and c5++ developer

and

