

The X/Ka-band Extragalactic Reference Frame

Cristina Garcia-Miro

and I. Sotuela

Madrid Deep Space Communications Complex/NASA, Ingenieria y Servicios Aeroespaciales, Madrid, Spain

C.S. Jacobs, J.E. Clark, A. Romero-Wolf

Jet Propulsion Laboratory, California Institute of Technology/NASA

S. Horiuchi

Canberra Deep Space Communications Complex/NASA, C.S.I.R.O. Astronomy and Space Science, Canberra, Australia

L.G. Snedeker

Goldstone Deep Space Communications Complex/NASA, ITT Exelis, Ft. Irwin, California, USA

- Ka-band pros and cons
- Status of current radio-based celestial frames
 - ICRF2: wavelength 3.6cm, 3.4K objects, 40-100 µas
 - K-band: wavelength 1.2cm, 0.3K objects, 100-250 µas
 - X/Ka: wavelength 9mm, 0.5K objects, 200-300 µas
- Need southern stations: complementary geometry

Ka-band on Edge of Radio Window

• Astrometry, Geodesy and Deep Space navigation, have been at 3.6cm/8.4 GHz (X-band) with 2.3 GHz (S-band) plasma cals

Ka-band (9mm/32 GHz) Advantages

- More *compact* sources which should lead to more *stable* positions!
- Higher Telemetry Rates: +5 to +8 dB
- Smaller, lighter RF spacecraft systems
- Avoid S-band RFI issues
- Ionosphere & solar plasma down 15X !! at 32 GHz (Ka-band) compared to 8 GHz thus observe closer to Sun & Galactic center

Disadvantages of Higher radio frequencies:

- More weather sensitive, higher system temp.
- Shorter coherence times
- Weaker sources, Many sources resolved
- Antenna Pointing more difficult

http://mars.jpl.nasa.gov/mro/multimedia/images/?ImageID=3373

Mars Reconnaissance Orbiter 2005 demonstrated Ka-band Communications and Navigation.

Current Status of Celestial Reference Frames at radio wavelengths:

S/X ICRF2: 3.6cm, 8 GHz K-band: 1.2cm, 24 GHz X/Ka-band: 9mm, 32 GHz

40 µas floor. ~1200 obj. well observed, ~2000 survey session only

Credit: Ma et al, eds. Fey, Gordon, Jacobs, IERS Tech. Note 35, Germany, 2009

VLBA all northern, poor below Dec. -30°. $\Delta Dec vs. Dec tilt= 500 \mu as$

Credit: Lanyi et al, AJ, 139, 5, 2010; Charlot et al, AJ, 139, 5, 2010

Cal. to Madrid, Cal. to Australia. Weakens southward. No ΔDec tilt

Cal. to Madrid, Cal. to Australia. Weakens south of Dec = -15deg

Accuracy of 450 X/Ka sources vs. S/X ICRF2 (current IAU standard)

RA: 194 μas = 0.9 nano-rad

Dec: 270 µas = 1.3 nano-rad

S/X ICRF2: Ma et al, editors: Fey, Gordon & Jacobs, IERS, Germany, 2009

Systems Analysis shows dominant Errors are

- Limited SNR/sensitivity
 - already increased bit rates: 112 to 448 Mbps. Soon to 2048?
- Instrumentation: already building better hardware
 - Ka-band phase calibrators, Digital Back Ends (filters)
- Troposphere: better calibrations being explored
- Weak geometry in Southern hemisphere
 - Limits accuracy to about 1 nrad (200 µas) level
 - No observations below Declination of -45 Deg!
 - DSN at X/Ka has only Canberra, Australia (DSS 34)
 - Need 2nd site in the Southern hemisphere especially for upcoming southern ecliptic missions

How do we improve accuracy? Southern Coverage!

Simulation of Added Southern Station

50 sessions, No Sim. Southern Data Adding Simulated data

- 50 real X/Ka sessions augmented by simulated data simulate 1000 group delays, SNR = 50
 ~9000 km baseline: Australia to S. America or S. Africa
- Completes Declination coverage: cap region -45 to -90 deg 200 μas (1 nrad) precision in south polar cap, mid south 200-1000 μas, all with just a few days observing.

• Horiuchi et al talk will show plan to attack this area.

Declination Sigma

- Orange: < 100 μas Red: < 200
- Green: < 300
- Blue: < 500
- Diuc. < 500
- Purple: < 1000
- White: >1000

Gaia-Optical vs. VLBI-radio:

Celestial Frame tie and Accuracy Verification

Gaia: 10⁹ stars

- 500,000 quasars V< 20 20,000 quasars V< 18
- radio loud 30-300+ mJy and optically bright: V<18
 - ~2000 quasars
- Accuracy
 70 μas @ V=18
 25 μas @ V=16

Figure credit: http://www.esa.int/esaSC/120377_index_1_m.html#subhead7

9mm vs. 3.6cm? Core shift & structure

Positions differences from 'core shift'

Credit: A. Marscher, Proc. Sci., Italy, 2006. Overlay image: Krichbaum, et al, IRAM, 1999. Montage: Wehrle et al, ASTRO-2010, no. 310.

- wavelength dependent shift in radio centroid.
- 3.6cm to 9mm core shift: 100 µas in phase delay centroid? <<100 µas in group delay centroid? (*Porcas, AA, 505, 1, 2009*)
- shorter wavelength closer to Black hole and Optical: 9mm X/Ka better
- Majid et al talk will give complementary info on source physics

NASA

Optical brightness of X/Ka 9mm sources

Median optical magnitude $V_{med} = 18.6$ magnitude (71 obj. no data) > 130 objects optically bright by Gaia standard (V<18)

05 Mar 2012 C. Garcia-Miro

- <u>398 of 469 X/Ka 9mm objects with known optical V magnitudes</u> 132 objects optically bright (V<18)
 213 objects optically weak (18 < V<20)
 53 objects optically undetectable (V > 20)
 71 objects *no optical info yet* (V = ??)
- Simulated Gaia measurement errors (sigma RA, Dec) for 345 objects: median sigmas ~ 100 µas per component
- VLBI 9mm radio sigmas ~200 µas per component and improving
- Covariance calculation of 3-D rotational tie using current 9mm radio sigmas and simulated Gaia sigmas Rx +- 14 μas <- Weak. Needs south polar VLBI (Dec < -45) Ry +- 11 μas
 Pa + 10 μas
- Rz +- 10 µas
- Now limited by radio sigmas for which 2-3X improvement possible.
 Potential for rotation sigmas ~5 µas per frame tie component

- Future tracking is moving to Ka-band: +5 to 8dB telemetry
- Quasar astrophysics: Ka position closer to optical position than S/X-based ICRF2, less extended structure expected
- Ka-band Celestial Frame: 469 Active Galactic Nuclei
- However, DSN lacks 2nd southern station
- Simulated Southern Geometry shows great promise
- Gaia tie:

>130 objects radio loud @9mm *and* optically bright V<18 Ties Gaia optical to VLBI radio frame Study astrophysics: core shift, jet vs. accretion disk Independent check on Gaia accuracy at 70-100 µas level 5-15 µas potential precision for 3-D frame tie