

MARBLE (Multiple Antenna Radiointerferometry for Baseline Length Evaluation): Development of a compact VLBI system for calibrating GNSS and <u>electronic distance measurement devices</u>

 [1]ICHIKAWA Ryuichi, ^[2]ISHII Atsutoshi, ^[3]TAKIGUCHI Hiroshi, KIMURA Moritaka, ^[1]SEKIDO Mamoru, ^[1]TAKEFUJI Kazuhiro, ^[1]UJIHARA Hideki, ^[1]HOBIGER Thomas, ^[1]HANADO Yuko, ^[1]KOYAMA Yasuhiro, ^[1]KONDO Tetsuro, ^[4]KURIHARA Shinobu, ^[4]KOKADO Kensuke, ^[4]KAWABATA Ryoji, ^[2]NOZAWA Kentaro,
 ^[2]MUKAI Yasuko, ^[4]KURODA Jiro, ^[4]ISHIHARA Misao, ^[4]ATSUZAKA Shigeru

[1] National Institute of Information and Communications Technology (NICT), Japan
 [2] Advanced Engineering Services Co., Ltd, Japan
 [3] Auckland University of Technology, New Zealand
 [4] Geospatial Information Authority of Japan (GSI)

34m antenna

Cashima pace Technology Center

Compact VLBI system

10

Space Technology Center Outline

 Motivation Observation Concept Development of Compact VLBI System • Geodetic Experiments Summary Outlook • T&F transfer using VLBI

Motivation

to validate accuracy of GPS and EDM survey instruments

GSI baseline calibration site

C 2007 ZENRING ST

Reference Baseline (~10 km)

Google

Observation Concept

Observation Concept

Multiple Antenna Radio-interferometer for **Baseline Length Evaluation** MARBLE System

Kashir

Development

Specifications of MARBLE compact VLBI system

Dish Diameter: 1.5-1.65m
Primary Focus Feed
Mount: AZ/EL
Slew Speed: > 5° /sec
Transportability

7 Kashima Space Technology Center Installation

Front-end system

Geodetic experiments

Station location

Results

Accuracy assessment using slide mechanism

Horizontal position could be moved

Kashima Space Technology Center

3

1

6

Space Technology Center

Space Technology Center Results

Summary.

 We have developed two compact VLBI system with 1.6 m diameter aperture antenna in order to provide reference baseline lengths for GPS and EDM calibration.

 We have carried out seven VLBI experiments on the Kashima-Tsukuba baseline (about 54 km) using the compact VLBI system during December 2009 - December 2010. The averaged baseline length and repeatability of the experiments is 54184874.0±2.4 mm.

OUTOOK T&F transfer using compact VLBI

system

Potential for T&F Transfer using VLBI?

- Current systems provide a frequency link stability of about 2 x 10⁻¹⁵ @ 1d (ADEV) (Rieck et al. [2010])
- VLBI2010 is expected to perform much better than current systems
- VLBI2010 will be a continuously operating space geodetic technique
- Only initial cost
- No transponder cost
- prototype VLBI2010 system currently under development \rightarrow no data for verifying TFT potential

simulations based on VLBI2010 specifications

Simulation result

OST OST

T&F transfer using compact VLBI system

 NICT will develop a compact VLBI system that includes the VLBI2010 specification for the purpose of T&F transfer.

