
static code 
analysis

nightly build

spell check

docu- generator

source code 
formatter

Continuous integration and quality control during software development
Martin Ettl1/2, Alexander Neidhardt1 , Walter Brisken3, Reiner Dassing4

(1FESG Wettzell,2MPIfR Bonn, 3NRAO, 4BKG)

Abstract:

Modern software has to be stable, portable, fast and reliable. This requires a sophisticated infrastructure supporting and providing the developers with additional

information about the state and the quality of the project. That's why we have created a centralized software repository, where the whole code-base is managed and

version controlled on a centralized server. Based on this, a hierarchical build system has been developed where each project and their sub-projects can be

compiled by simply calling the top level makefile. On the top of this, a nightly build system has been created where the top level makefiles of each project is called

every night. The results of the build, along with the compiler warnings reported to the developers using generated HTML pages. In addition, all the source code is

automatically checked using static code analysis tools. These tools produce warnings, similar to those of a compiler, but more pedantic. The reports of this analysis

are translated to HTML, similar to the nightly-build reports. Armed with this information, the developers can reveal issues in their projects at an early development

stage. This overall reduces the number of possible issues in the software to ensure quality of the projects at each development stage. These checks are now also

offered as a service to the scientific community. The DiFX software correlator project already uses this offer.

What does continuous integration mean?

During the development of a software project it is hard to determine the

state and stability of the current development version. Neither side-effects,

nor portability issues can be detected during the development phases,

especially when multiple developers work on resources, having relations to

other projects. The first attack to this problem was to set up a centralized

version control management system, where each developer commits his

changes regularly (at least each day) to a centralized software repository. All

the different versions are managed and stored in this repository, so that they

can be restored easily. This makes it very comfortable, for instance to revert

to an older version of the source code. Based on this, also the newest

version of the source code is always available and it can therefore be

inspected intensively. Based on the newest version of the software, a

collection of separated inspections run automatically, to check the source

code (see red circles). Then, the results of the tests are converted to HTML

pages. These results are published on the project homepage9 in a password

restricted area, to which only the developers of the project have access.

Therefore, each developer can use this information to detect and fix possible

problems in the code. This continuous integration work flow reduces the

amount of severe issues during the whole development phases. Currently,

the DiFX2 community uses this service. The whole work flow of the

continuous integration concept is shown in the figure on the right.

Why unit tests?

Unit tests are small test programs to check the plausibility of

function behavior and results on module level. For this, we have

created a programming based environment to collect all these

testing programs (simple_testsuite). This suite offers a way to

create such validation tests for all our basic software components

and the generated code. This tests can be run on different

architectures (32/64-Bit) with different compilers on different

Linux operating systems to reveal portability issues.

Furthermore, the test-coverage is measured using the GNU-

compiler. This information about the current test-coverage as

well as the unit-test report gives an overview of the current

software test state. Based on this information, it is possible to

measure the quality of the tested source code.

What is static code analysis of source code?

Static code analysis inspects the code, to find potential programming flaws,

without executing or compiling the source code. Currently a collection of open

source static analyzing tools2,4,5,8 are used. These tools aimed to find bugs, which a

compiler does not detect in C/C++-source code. It checks the code for memory

leaks, null pointer dereferencing, unused variables, not initialized variables,

mismatching allocations/de-allocations, buffer overruns, memory accesses out of

bound and many more issues.

Why using a source code formatter?

An automatic formatting tool1 is used in regular intervals to

format the source according to specific design rules. This

ensures the same indentation and style in the whole software

project and therefore improves readability. In addition, it

reduces maintenance time for developers and simplifies to

share source code.

How to prepare for nightly builds?

We have created an automated build-system, based on standardized GNU-

makefiles, where every project has its own makefile. Projects that contain

several sub-projects have a top level makefile, capable of building all sub

projects at once. Therefore the whole code basis can be compiled by simply

calling the top-level makefile. This is done automatically every night on our

Linux-servers, using several GNU-compiler versions (4.1-4.3).

What is a documentation generator?

The developer documentation is created by doxygen3, an open

source documentation generator. This tool reads the source

code, including all the comments, extracts the needed

information and generates developer documentation in several

formats including call-graphs and Unified Modelling Language

diagrams. Running the documentation generation automatically,

is helpful for developers. This especially, supports sharing of

information. Furthermore, the generated documentation can be

used to get an overview about the object-oriented software

structure and the relationship of software components in the

projects. This makes it easier for beginners to understand the

programming interfaces and the internal structures.

References:

[1] http://astyle.sourceforge.net/

[2] http://sourceforge.net/projects/cppcheck/

[3] http://www.stack.nl/~dimitri/doxygen/index.html

[4] http://www.splint.org/

[5] http://www.dwheeler.com/flawfinder/

[6] http://www.statsvn.org/

[7] http://git.profusion.mobi/cgit.cgi/lucas/codespell/ 

[8] http://code.google.com/p/nsiqcppstyle/ 

[9] http://econtrol-software.de/

[10] http://www.aoc.nrao.edu/~wbrisken/

[11] http://cira.ivec.org/dokuwiki/doku.php/correlator/difx

Why spell check of source code?

Due to the limited spell checking capabilities of programming

editors, an automated spell checking tool7 helps to reduce the

number of misspelled words in source code and ASCII files.

Finally, this improves the quality of the code an its automatic

generated documentation.


