Subdaily station motions from Kalman filtering VLBI data

Benedikt Soja, Maria Karbon, Tobias Nilsson, Kyriakos Balidakis, Susanne Glaser*, Zhiguo Deng, Robert Heinkelmann, Harald Schuh

bsoja@gfz-potsdam.de

GFZ German Research Centre for Geosciences, Potsdam, Germany
*Technische Universität Berlin, Berlin, Germany

22nd Meeting of the EVGA, Azores
May 19, 2015
Kalman filtering of VLBI data

• Main motivation: real-time analysis of continuous observations
 - VLBI Global Observing System (VGOS): e-VLBI, 24/7 operations
 - FWF project VLBI Analysis in Real-Time (VLBI-ART)

• Main advantage today (post-processing): state based approach
 - Stochastic processes instead of deterministic functions

• Implementation in VieVS@GFZ
 - Kalman filter & smoother
 - Estimation of same geodetic parameters as Vie_LSM
 - Same models and conventions as Vie_LSM
 - Random walk (RW) for most parameters, optional to use integrated RW or first order Gauss-Markov processes

• KF & troposphere: Soja et al. (P3-03)
• KF & EOP: Karbon et al. (P3-11)

B. Soja et al.: Subdaily station motions from Kalman filtering VLBI data
Estimation of station coordinates by KF

- Option to estimate daily values
 - Random walk with process noise set to zero
- Option to force continuity at session borders
 - Prediction from previous session
- Option to allow subdaily motion
 - Process noise ≠ zero
 - Example noise levels (power spectral densities PSD of the driving white noise):
 1. 0.01 cm²/d
 2. 0.1 cm²/d
 3. 1 cm²/d

B. Soja et al.: Subdaily station motions from Kalman filtering VLBI data
Test case: recovery of neglected geophysical displacements (I)

- Switch off displacement models for selected stations
- Exclude them from the datum
- Increase PSD significantly
- KF should recover signals

- Solid Earth tide displacements
 - Example of YEBES40M during CONT14
 - Model itself: RMS of 10.8 cm, peaks of ± 20 cm
 - PSD in the KF set to 100 cm2/d
 - WRMS KF minus IERS model: 1.8 cm
 - 83% successfully recovered
 - Similar performance for other stations
Test case: recovery of neglected geophysical displacements (II)

- **Ocean tide displacements**
 - Example of WARK12M during CONT14
 - Model itself: RMS of 1.9 cm, peaks of ± 4 cm
 - PSD in the KF set to 30 cm²/d
 - WRMS KF minus FES2004 model: 1.6 cm
 - 16% recovered, but phase agrees well

- **Tidal & non-tidal atmosphere loading displacements**
 - Effects too small to recover

- **Hydrology loading displacements**
 - Only monthly models publically available
Subdaily motions in VLBI analysis

Assumptions:
- Applying all loading models except for hydrology and non-tidal ocean loading
- Hydrology and non-tidal ocean loading not relevant on timescales of a few days
- Solid Earth tide correction and Love/Shida numbers accurate enough

→ Variations in estimated coordinates mainly due to:
 1. Deficiencies in tidal ocean and atmosphere loading models
 2. Correlations with troposphere and clock parameters

Different stations, CONT14
Deficiencies in loading models (I)

- Accuracy and reliability of models difficult to assess
- Approach: investigate differences between loading models provided by different institutions

- Ocean tide loading
 - FES2004
 - TPXO 7.2
 - Tested many others, similar results
Deficiencies in loading models (II)

- **Tidal atmosphere loading**
 - University of Luxembourg
 - GSFC

- **Non-tidal atmosphere loading**
 - GSFC
 - GFZ

- **Summation of all differences**
 - ocean & atmosphere
Deficiencies in loading models (III)

- Time series of loading model differences computed
 - for every station of CONT14
- PSD estimated via Allan standard deviation
 - Assuming random walk process
- Map: PSD averaged over radial, east, and north components

- Station average: 0.011 cm²/d
- Maximum at Ny-Ålesund
 - Ocean loading models with large differences
- Average 0.009 cm²/d without Ny-Ålesund
Process noise of station coordinates

- PSD of station coordinates computed from KF solution
 - KF setup with random walk, PSD of $0.1 \text{ cm}^2/\text{d}$
- PSD estimated via Allan standard deviation
 - Assuming random walk process
- Map: PSD averaged over radial, east, and north components

- Station average: $0.019 \text{ cm}^2/\text{d}$
- Compared to PSD from model deficiencies:
 - 2x as large
 - No significant correlations
Subdaily motions in VLBI analysis

Assumptions:
- Applying all loading models except for hydrology and non-tidal ocean loading
- Hydrology and non-tidal ocean loading not relevant on timescales of a few days
- Solid Earth tide correction and Love/Shida numbers accurate enough

→ Variations in estimated coordinates mainly due to:
 1. Deficiencies in tidal ocean and atmosphere loading models
 2. Correlations with troposphere and clock parameters

Different stations, CONT14
Correlations with other parameters

- Correlations between station height, tropospheric delays, clocks
- Separation by aiming for good sky coverage
 - CONT14 with better geometry compared to standard IVS sessions
- KF solution
 - Station coordinate PSD of 0.1 cm2/d
 - ZWD PSD of 17 cm2/d
- Correlations between ZTD and radial component (R):
 - From -0.51 to 0.60, average 0.09
 - Statistically significant (p < 0.05)
Correlations with troposphere (I)

- Possibility in our KF implementation to fix ZWD to that from other solutions or external data
- Four different solutions, example: Wettzell, CONT14
 - Station coordinate PSD always 0.1 cm²/d

1. ZWD estimated (standard)
2. ZWD fixed to KF solution with constant station coordinates
3. ZWD fixed to KF solution with daily station coordinates
4. ZWD fixed to GPS solution
 - 5 min temporal resolution
 - Lu et al. 2015
Correlations with troposphere (II)

- Comparison of ZWD from the different solutions
- Differences w.r.t. KF standard solution
 - VLBI solutions within 5 mm, RMS of 1 mm
 - GPS within 3 cm, RMS of 5 mm
Correlations with troposphere (III)

- **Effect on station coordinates**
- **Differences in radial components**
 - VLBI solutions within 6 mm, RMS of 2.5 mm
 - GPS within 9 mm, RMS of 6 mm
- **Correlations between ZTD & R**
 - KF ZWD solutions: 0.1-0.3
 - GPS ZWD solution: 0.4
 - Statistically significant
Summary

- **Kalman filtering allows to study station displacements** on various timescales by adapting the stochastic model.

- **Residual differences of loading models** may explain about 50% of the estimated variations in station coordinates.
 - In terms of noise level; assumptions could be too optimistic.

- **Correlations with tropospheric delays** found to be significant, impact of up to 1 cm in height.
 - When applying different ZWD solutions from VLBI and GPS.

Outlook

- Compare to external data: GNSS coordinates, gravimetry.
- Estimate empirical subdaily model from residual VLBI time series.
- **Advertise**ment: Kalman filter for VTRF creation.
 - Talk at IUGG 2015 in Prague by Soja et al.
Thanks for your attention!

bsoja@gfz-potsdam.de

Acknowledgements
VLBI data: IVS
GPS data: Cuixian Lu
Loading models: several institutions (see talk)
Project funding: FWF (VLBI-ART – P 24187-N21)