

A simulator to generate VLBI baseband data in Matlab

Jakob Gruber^a, Johannes Böhm^a, Matthias Schartner^a, Axel Nothnagel^b

^aTU Wien, Austria ^bUniversität Bonn, Germany

Baseband data

- "Baseband" data is referred to as the filtered, down-converted, sampled, and quantised electric field strength measurements generated at each station
- Output product of the station
- Input data for the correlator

Baseband data simulator

- Simulation of baseband data is a simulation of the observation process
- Model parameters to characterize the observation process
- Formatter to store the simulated baseband data

Motivation:

- Simulation of *new* VLBI observation scenarios (e.g. new satellite observations, new recording modes)
- Proof of concept (technical feasibility) and evaluation of the performance with respect to the correlation of the simulated data
- Correlation studies (scheduled vs. correlated, correlation parameterization, ...)

Model parameters (1/2)

Discretization of the observation process with its main drivers

Source:

- Signal type of source:
 - white noise from quasars
 - artificial signals from satellites
- Received signal strength (flux density, antenna temperature)

Antenna:

- Sensitivity (SEFD, Tsys)
- Sky frequency
- System delays: cable, channel dependent delays
- Passband filter design
- Phase calibration signal
- Phase distortion
- Polarization

Courtesy of Beijing Aerospace Control Center

Model parameters (2/2)

Further noise components:

- Cosmic microwave background
- Ionosphere
- RFI
- ...

Observing mode:

- Observation duration
- Sampling frequency or bandwidth
- Number of bits
- Number of channels

Observing geometry:

- Group delay and delay rate
- Relative velocity between source platform and antenna platforms (Doppler shift)
- Date of observation

Courtesy of Beijing Aerospace Control Center

Example - different frequency setup

Simulation of mixed mode scans

- Source:
 - white noise from quasar
 - source flux: 4 Jy
- Ys:
 - sampling rate: 32 MHz
 - SEFD: 3000 Jy
 - f0: 8.00 GHz
- Sa and Wn:
 - sampling rate: 128 MHz
 - SEFD: 1900 Jy
 - f0: 7.98 GHz

observed frequency bands

Example - Doppler shift

Simulation of moving targets

- Source:
 - LEO velocity: 7.8 km/s
- Wn:
 - bandwidth: 8 MHz
 - f0: 8.00 GHz

Hb:

- bandwidth: 8 MHz
 f0[.] 8 00 GHz
- Loss of bandwidth: 2.3%

Simulation pipeline

- Model parameterization, e.g. SEFD, date of observation represents input
- Simulated baseband data streams are stored in VDIF format
- VEX file creation included (required for correlation)
- VEX file and VDIF DB completely consistent \rightarrow no correlation issues

Usage of short integration time but strong source flux method to achieve desired SNR

VieVS

Validation of the baseband data simulator

Results of correlated and fringe-fitted baseband data simulation:

 \rightarrow Xpower spectrum shows flat phase and amplitude response with ringing artifacts at the bandpass edges

 \rightarrow phase and amplitude stability decreases with decreasing SNR

1 bit and 2 bit quantization

- Scheduled vs. correlated SNR
- Study the impact of 2 bit distribution
- qfact: sets the proportion to one sigma of the Gaussian noise distribution to define the limit of the inner quantization box
- Real VLBI antennas show qfact value of around 0.8

qfact		-	+	+ +
0.6	27%	23%	23%	27%
0.7	24%	26%	26%	24%
0.8	21%	29%	29%	21%
0.9	18%	32%	32%	18%
1.0	16%	34%	34%	16%

Jakob Gruber, baseband data simulator

Impact of quantization on fringe SNR

Results:

ightarrow General good agreement between scheduled and correlated SNR values

- \rightarrow 1 bit sampling seems to be slightly pessimistic
- \rightarrow 2 bit sampling seems to be slightly optimistic

 \rightarrow Small difference in SNR values using different qfact (best result with a qfact values of 1)

 \rightarrow Large scale SNR values show non-linear trend and large differences between scheduled and correlated results (might be due to bad simulation configuration of the ratio of source flux and SEFD)

APOD DOR tones

 \rightarrow Proof of concept to generate artificial source signal with specific signal structure \rightarrow Usage of very high sampling rate (128MHz)

 \rightarrow Can be used to test the applicability of a certain signal structure of future satellite missions

Conclusion

- Baseband data simulator in Matlab with
 - source model
 - antenna model
 - recording and geometry model
- VDIF formatter to feed simulations into correlators
- Baseband data simulator can be used to
 - study impact of antenna behaviour on correlation results (e.g. phase stability)
 - simulate artificial signals and test their applicability in the analysis
- Usage of supercomputing infrastructure (VSC3/4) at TU Wien to generate large simulated baseband data files (http://vsc.ac.at/)

 \rightarrow Evaluation of the difference of short integration in contrast to common integration times

• Will be put under the VieVS umbrella and will be open source

