Researching and application of VLBI Differential PHase Delay in Lunar exploration

Xin Zheng, Qinghui Liu, Yong Huang, Peijia Li, Zhijun Xu, Zhanghu Chu, et al Shanghai Astronomical Observatory 18, March, 2019 LPA, SPAIN

outline

• Background

Tracking and Data Relay Satellite System of CE04(TDRSS-C4) Same-beam VLBI(SBI)

• preparing

orbit prediction, schedule, correlation process

Data process

Beacon, correlation phase, Differential Phase Delay (DPD) residual, Group delay(GD) residual, DPD, Differential Group Delay (DGD), closure delay orbit determination using GD and DPD

conclusion

TDRSS-C4

- TDRSS-C4 launched on May 21, 2018, and entered the Earth-Moon transfer orbit immediately.
- On June 14, it entered the Halo mission orbit at L2, Lagrange, about 65,000 kilometers from the moon.
- It was mainly responsible for receiving the signal transmitted by Chang'e-4 on the back of the moon and transmitting them back to the ground receiving station.
- Microsatellite B and TDRSS-C4 separated from the Rocket and then entered the Earth-Moon transfer orbit. During this period, the signal of microsatellite B was also received by CVN(BJ,KM,UR,TM) which pointted to TDRSS-C4. That is to say, the same-beam VLBI observations were carried out for the two detectors.

microsatellite B

SBI Observation condition

- first, to ensure that both detectors can be simultaneously observed by ground radio telescopes
- second, the signal frequencies which two detectors transmit should be reasonable, because the influence of ionosphere is the main systematic error
- third, Two detectors need to be continuously observed so that the calculated DPD has a fixed offset, which can be calculated in the subsequent process.
- fourth, Data processing needs to process the data of two detectors separately, which challenges the real-time requirement.

SBI: Historical Application

- Two microsatellites, Rstar and Vstar, were observed by the same-beam VLBI in the SELENE mission of Japan in 2008. The calculated DPD was applied to orbit determination and the accuracy of the two microsatellites reached 10 m order.
- During the CE03 mission in 2013, we successfully calculated the same-beam VLBI DPD between the lander and the rover, and used it to monitor the situation of rover. We can see the rover that turn around and moves slowly in the lunar surface.
- The relative position of the Rover and Lander is calculated by DPD, and the accuracy reaches 1m level

SBI application in CE04

In the Earth-Moon transfer section, the ground radio telescope receives Sband DOR signals of TDRSS-C4 and microsatellite B at the same time. In the observation data of several days, there are more than one hour continuous observation data on May 22, 2018. Here we report the analysis and research of the data on this day_o

SBI : preparing

- prediction orbit: VLBI center had obtained the precise ephemeris of TDRSS-C4 and microsatellite B successfully, and calculated the predicted orbit of these two detectors.
- schedule : Job files for correlation process can be got here, including the delay of VLBI geometric model of two detectors
- correlation process : process the observed data recorded by Mark5B twice by the VLBI geometric model of two detectors, it cost too much time for computing.

Data process : beacon

TDRSS-C4

S band DOR signal CDAS2 2MHz 16 channels so it can record both two detectors all signal

microsatellite B

Data process : correlation phase

phase correlation of TDRSS-C4 main carrier and its 8-power polynomial fitting residual

equation

$$\sigma_{pd} = \sigma_{\varphi} / (2 \times pi \times f)$$

the accuracy of Phase delay of TDRSS-C4 was about 3.4ps, and the accuracy of microsatellite B was about 3.99ps

Data process : residual of DPD

The residual of DPD was about 1.946ps, which is less than 3.4 PS and 3.99 PS of the phase delay of the two detectors.

The differential process cancels out the systematic errors such as atmospheric errors, but still have systematic error

Data process : residual delay of GD

TDRSS-C4

residual delay of Group delay calculated by corelation data so small because of the high accuracy of prediction satellite orbit

Data process : DPD

22, May, 2018 observated by CVN

In the middle of DGD, so have a constant bias each baseline

more than 1 hour continued data

Two detectors not maneuver

total DPD add model and residual

Data process : residual of DPD and DGD

the DPD and DGD was correctly computed

The residual error of DGD was 50 times larger than ther error of DPD

Data process : the closure delay of three baselines

Station: BJ, KM, TM quite good but still have constant bias

closure delay of dpd

Data process : orbit determination Group delav

Data process : orbit determination DPD

bias0_91	- 1	=	-0.18096	constant bias of DPD each baseline					
bias0_91	- 2	=	-0.20236	unit meter	ing				
bias0_91	- 3	=	0.03543						
bias0_91	- 4	=	0.00482						
bias0_91	- 5	=	0.12883	rms91 rmsp91	=	<u></u>		0.00133	
bias0_91	- 6	-	0.12471	nobs91 SAT-10BS.	=	ê		5075	
				rms_sta	2	3	=		0.00149
	rms_sta	2	4	=		0.00161			
average	RMS	i rms sta	2	5	=		0.00132		
and res	rms_sta	3	4	=		0.00146			
9000103	rms_sta	3	5	=		0.00089			
unit mete	rms sta	4	5	=		0.00109			

SAT-20BS.

conclusion

- we correctly calculated the DPD data in TDRSS-C4 mission which existed two detectors during the Earth-Moon transfer orbit
- we successfully used the DPD data for orbit determination for these two detectors

Thank you for your attention