

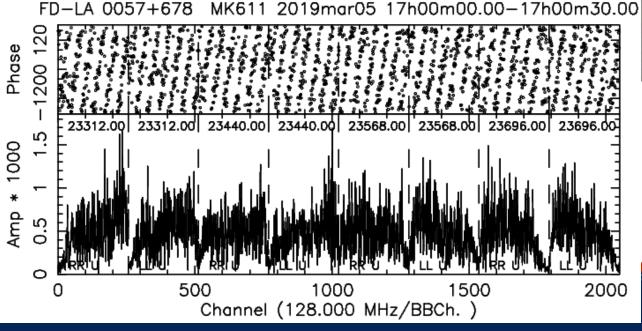
The Very Long Baseline Array Walter Brisken

VLBA status now

- 25 years of operation in 2018
- USNO became 50% partner for VLBA operations
 - Reduction in Open Skies time to about 50%
 - Huge increase in VLBA's contribution to geodetic VLBI
- Long Baseline Observatory (LBO) formed and dissolved
 - Fair NRAO management recompetition not possible with uncertain future of VLBA
- NSF awarded to NRAO 8 years of continued operation
 2018-2026
- In 2026 all of NRAO will be up for renewal
- Scientific staffing of VLBA is recovering; 2 hires this year

Hurricane Irma, Maria

- Two hurricanes hit St. Croix in Sep 2017
- Island power, comms down for months
 - Antenna down for 6 months
- Antenna minimally damaged, but incurred significant corrosion though disuse
- Received NSF funds to restore antenna and site to full work working condition
 - 4.5 months of downtime expected starting in April or May



These are not galaxies!

Ongoing developments: Mark6

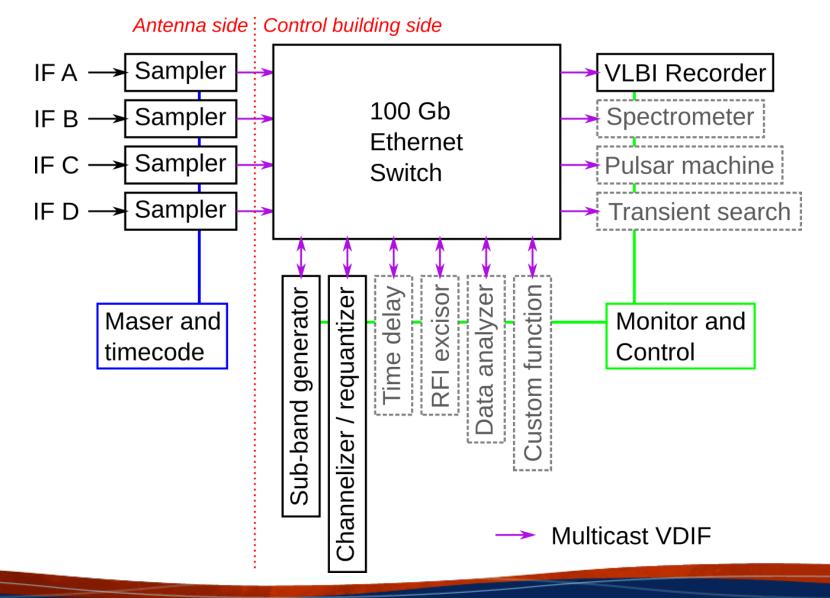
- 4 Gbps initially, 8+ Gbps later
- Units deployed at 8 sites
- Full array testing very soon
- Offered as Shared Risk Observing
- Will operate Mark5C for about 1 more yr.

Technical direction Ongoing developments:

- New flexible frequency synthesizers
 - Currently VLBA tuning is in >100 MHz steps
 - New synthesizers will tune precisely in I Hz steps
 - Will improve frequency matching with EVN, GMVA, IVS
 - Will allow improved avoidance of RFI
- Fiber
 - To be installed at all VLBA antennas
 - Infrastructure to 10 Gbps
 - 100 to 300 Mbps initial service
 - Support diagnostics, some rapid-response science, maybe real-time spectroscopic VLBI

Ongoing developments:

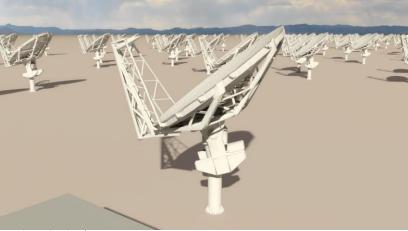
- Migration to Linux-based control system
 - Purely vex driven system
 - Move to vex2 in a couple years???
- Installation of geodetic grade GNSS receivers at VLBA sites
 - 5 VLBA sites currently have these
 - In direct contact with NOAA/NGS
 - 2 new receivers expected in 2019
 - 3 more in future years

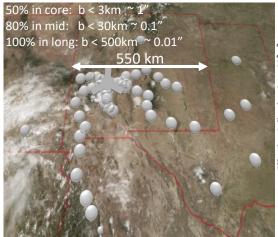


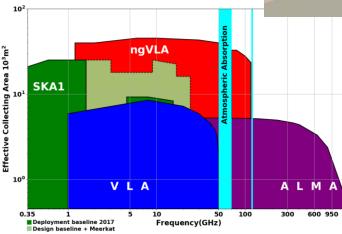
New initiatives: New Digital Infrastructure

- Replace ROACH Digital Back Ends (RDBEs)
 - Hard to maintain, no future
- Scalable system with 100 Gbps Ethernet switch at core
- Will support > 2 bits, non-VLBI instrumentation
- Will achieve I GHz per polarization (8 Gbps at 2-bit samples)
 - Will support wider bandwidth after analog update (unfunded)
- Project phases
 - Phase I: Risk reduction and proposal development (2019)
 - Phase 2: Develop and install 2 units (2020)
 - Phase 3: Deploy across the VLBA (2021; funding not yet secure)

VLBA New Digital Architecture


Possible receiver upgrades


- X-/Ka-band dual-band capability
 - Option I: 26-40 GHz EVLA-based receiver + VLBA X-band
 - Funding for 2-station deployment looking promising
 - Option 2:8-35 GHz single receiver (JPL effort)
 - Linear polarized
- KVN-style multi-band receiver
 - Simultaneous 22, 43, 86 GHz receiver bands
- LNA upgrades possible to improve performance
 - X-band, Ku-band, Q-band



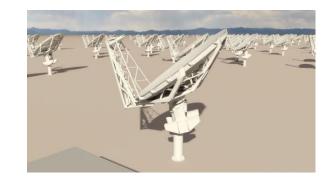
A next-generation Very Large Array (ngVLA)

- Scientific Frontier: *Thermal imaging at milli-arcsec resolution*
- Sensitivity/Resolution Goal:
 - 10x sensitivity & resolution of JVLA/ALMA
- Frequency range: 1.2 –116 GHz
- Located in Southwest U.S., centered on VLA
- Baseline design under active development
- Low technical risk (reasonable step beyond state of the art)

Complementary suite from meter to submm arrays for the mid-21st century

- < 0.3cm: ALMA 2030
- 0.3 to 3cm: ngVLA
- > 3cm: SKA

Slide from Eric Murphy / ngVLA project



Current Reference Design Specifications

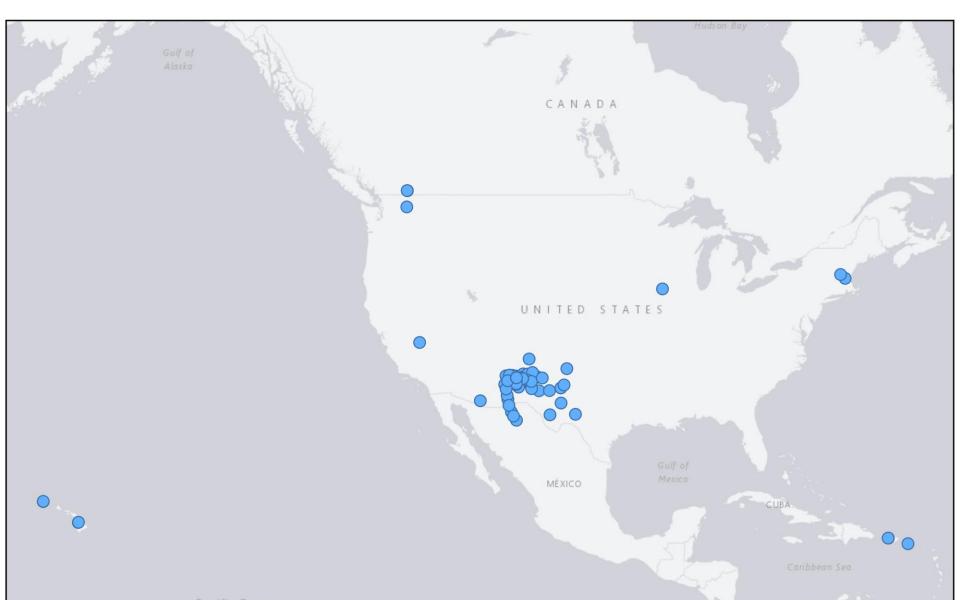
(ngVLA Memo #17)

- 244 18m offset Gregorian (feed-low) Antennas
 - Supported by internal cost-performance analysis
 - 30 antennas to replace VLBA
- 19 6m short spacing array + 4 18m in TP mode to fill in (*u*, *v*) hole
- Fixed antenna locations centered in New Mexico
- 1.2 50.5 GHz; 70 116 GHz
 - Single-pixel feeds
 - 6 feeds / 2 dewar package

Receiver Configuration

Band #	Dewar	f _L GHz	f _M GHz	f _H GHz	f _H : f _L	BW GHz
1	А	1.2	2.35	3.5	2.91	2.3
2	В	3.5	7.90	12.3	3.51	8.8
3	В	12.3	16.4	20.5	1.67	8.2
4	В	20.5	27.3	34.0	1.66	13.5
5	В	30.5	40.5	50.5	1.66	20.0
6	В	70.0	93.0	116	1.66	46.0

 Continuum Sensitivity: ~0.1 uJy/bm @ 1cm, 10mas, 10hr => T_B ~ 1.7 K
 Line sensitivity: ~19 uJy/bm @ 1cm 10 km/s


Line sensitivity: ~19 uJy/bm @ 1cm, 10 km/s, 1", 10hr => T_B ~ 25 mK

Slide from Eric Murphy / ngVLA project

ngVLA Long Baselines Conceptual distribution of antenna clusters

Conclusion

- Great VLBI science over past decade enable continued operation of VLBA
 - No immediate threat of closure
- ngVLA with long baselines poised to supplant the VLBA in 2030s
 - Will aim for continued VLBA operations until this time
- Significant capability increase expected at VLBA in next 10 years
 - 2x bandwidth in 2019
 - Geodetic grade GNSS receivers at all VLBA sites (now only 5)
 - New digital back-ends by 2021?
 - Ka-band receivers?

www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

