

Australian Government

Geoscience Australia

Observations of radio sources near the Sun

Oleg Titov¹, Sébastien Lambert², Benedikt Soja³, Fenchun Shu⁴, Alexei Melnikov⁵, Jamie McMallum⁶, Lucia McCallum⁶, Matthias Schartner⁷, Aletha de Witt⁸, Dmitri Ivanov⁵, Andrei Mikhailov⁵, Sang Oh Yi⁹, Wen Chen¹⁰, Bo Xia¹⁰, Masafumi Ishigaki¹¹, Sergei Gulyaev¹², Tim Natusch¹², Stuart Weston¹²

¹Geoscience Australia; ²Paris Observatory, CNRS, Sorbonne University; ³Jet Propulsion Laboratory; ⁴Shanghai Astronomical Observatory; ⁵Institute of Applied Astronomy; ⁶University of Tasmania; ⁷Technical University of Wien; ⁸Hartebeesthoek Radio Astronomical Observatory; ⁹National Geographic Information Institute, Sejong Space Geodetic Observatory; ¹⁰Shanghai Astronomical Observatory; ¹¹Geospatial Information Authority of Japan; ¹²Auckland University of Technology

General Relativity

Einstein predicted the light deflection for the Solar gravitational field on 1".75 for the Solar radius R ~ 700.000 km (1915).

General Relativity

1. Eddington detected the deflection in 1919; Dyson, Eddington and Davidson (1920)

IX. A Determination of the Deflection of Light by the Sun's Gravitational Field, from Observations made at the Total Eclipse of May 29, 1919.

By Sir F. W. DYSON, F.R.S., Astronomer Royal, Prof. A. S. Eddington, F.R.S., and Mr. C. DAVIDSON.

(Communicated by the Joint Permanent Eclipse Committee.)

The result from declinations is about twice the weight of that from right ascensions, so that the mean result is

 $1'' \cdot 98$

with a probable error of about $\pm 0'' \cdot 12$.

The Principe observations were generally interfered with by cloud. The unfavourable circumstances were perhaps partly compensated by the advantage of the extremely uniform temperature of the island. The deflection obtained was

 $1'' \cdot 61.$

The probable error is about $\pm 0'' \cdot 30$, so that the result has much less weight than the preceding.

GEOSCIENCE AUSTRALIA

Equation for the light deflection at arbitrary elongation (Shapiro, 1967)

$$\alpha = \frac{2GM}{c^2 r} ctg \frac{\theta}{2}$$

Parametrised **P**ost-**N**ewtonian (PPN) approximation (Will, 1973) $\gamma = 1$ in General Relativity; a constant parameter for all elongations θ

$$\alpha = \frac{2GM}{c^2 r} ctg \frac{\theta}{2} = \frac{(1+\gamma)GM}{c^2 r} ctg \frac{\theta}{2}$$

Small angle approximation $\theta \to 0$ $\frac{1}{r} ctg \frac{\theta}{2} = \frac{2}{R}$
$$\alpha = \frac{4GM}{c^2 R} = \frac{2(1+\gamma)GM}{c^2 R} \qquad \alpha = 1^{\circ}.75 \text{ for grazing}$$

$$\alpha$$
 = 1".75 for grazing light,
 $R = R_{\odot}$

Time delay vs light deflection

$$\tau_{geom} = \frac{-\frac{(\boldsymbol{b} \cdot \boldsymbol{s})}{c} \left(1 - \frac{(1+\gamma)GM}{c^2 r} - \frac{\langle \boldsymbol{V}_{\oplus}^2 \rangle}{2c^2} - \frac{(\boldsymbol{V}_{\oplus} \cdot \boldsymbol{w}_2)}{c^2} \right) - \frac{1}{c^2} (\boldsymbol{b} \cdot \boldsymbol{V}_{\oplus}) \left(1 + \frac{(\boldsymbol{V}_{\oplus} \cdot \boldsymbol{s})}{2c} \right)}{1 + \frac{1}{c} (\boldsymbol{s} \cdot (\boldsymbol{V}_{\oplus} + \boldsymbol{w}_2))}$$

$$\tau_{grav} = \frac{(1+\gamma)GM}{c^3} \ln \frac{|\boldsymbol{r}_I| + (\boldsymbol{r}_I \cdot \boldsymbol{s})}{|\boldsymbol{r}_2| + (\boldsymbol{r}_2 \cdot \boldsymbol{s})},$$

$$\tau_{GR} = \tau_{grav} + \tau_{coord} = \frac{(1+\gamma)GM}{c^3} \ln \frac{|\boldsymbol{r}_I| + (\boldsymbol{r}_I \cdot \boldsymbol{s})}{|\boldsymbol{r}_2| + (\boldsymbol{r}_2 \cdot \boldsymbol{s})} + \frac{(1+\gamma)(\boldsymbol{b} \cdot \boldsymbol{s})}{c} \frac{GM}{c^2 r}$$

$$\tau_{GR} = \alpha \frac{b}{c} \sin\varphi \cos A + \cdots \qquad \qquad \alpha = \frac{(1+\gamma)GM}{c^2 r} ctg \frac{\theta}{2}$$

Titov & Girdiuk A&A(2015)

GEOSCIENCE AUSTRALIA

Light deflection in VLBI

$$\alpha = \frac{2GM}{c^2 R} \frac{\sin\theta}{1 - \cos\theta}$$

Shapiro, Science, (1967); Ward, ApJ, (1970)

For a radio source within 1° from Sun

GEOSCIENCE AUSTRALIA

© Commonwealth of Australia (Geoscience Australia) 2012

Test of General Relativity with VLBI

- The gravitational delay includes the PPN parameter gamma, which is estimated using a large set of geodetic VLBI (since 1980s).
- 2. The current accuracy of the γ estimate is $\sigma \approx 2 \times 10^{-4}$, whereas numerous modifications of the theory of gravity predict deviation from $\gamma=1$ at level of $\Delta \gamma = 10^{-6} \div 10^{-7}$
- 3. From the "Cassini" experiment $\sigma \approx 2 \times 10^{-5}$ (Bertotti et al. 2003)

Test of General Relativity with VLBI

Author(s)	Year	γ	σ	Data
Counselman <i>et al.</i>	1974	0.98	± 0.06	1972 occultation of 3C279 by the Sun
Fomalont & Sramek	1975	1.0075	± 0.022	1974 occultation of 3C279 by the Sun
Fomalont & Sramek	1976	1.0035	± 0.018	1974 and 1975 occultation of 3C279 by the Sun
Robertson & Carter	1984	1.008	± 0.005	MERIT, POLARIS, IRIS
Carter, Robertson & MacKay	1985	1.000	± 0.003	POLARIS, IRIS since 1980
Robertson, Carter & Dillinger	1991	1.000	± 0.002	POLARIS, IRIS, CDP since 1980
Lebach et al.	1995	0.9996	± 0.0017	1987 occultation of 3C279 by the Sun
Eubanks et al.	1997	0.99994	± 0.00031	Geodetic VLBI sessions from 1979 to 1997
Shapiro et al.	2004	0.9998	$\pm 0.0002^1$	Geodetic VLBI sessions from 1979 to 1999
Lambert & Le Poncin-Lafitte	2009	0.99984	$\pm 0.00015^2$	Geodetic VLBI sessions from 1979 to 2008

Table 1. Review of γ -determination using geodetic VLBI data.

From "Cassini" $\sigma \sim 2 \cdot 10^{-5}$ Bertotti et al (2003)

Single VLBI experiment to estimate parameter γ

Experiment AUA020 - custom designed and scheduled (IVS OPC did not support the R&D proposal)

AUA020 - 1 May 2017 with 7 radio telescopes (Asia, Australia, South Africa, Europe), data correlated in Shanghai Astronomical Observatory

24-hour experiment

first 6 hours and the last hour – standard geodetic schedule

17 hours – focusing on two radio sources near the Sun

Single VLBI experiment to estimate parameter γ

Two radio sources were observed within 1°-3° from the Sun during 17 hours

GEOSCIENCE AUSTRALIA

© Commonwealth of Australia (Geoscience Australia) 2012

Solar corona electon density

Comparison to spacecraft tracking II

$$N_e(r) = N_0 r^{-\beta}$$

• Estimating $N_0 \& \beta$: $N_0 = (0.61 \pm 0.05) \ 10^{12} \text{ m}^{-3}$ $\beta = 2.18 \pm 0.06$

First determination of **both power-law parameters** $N_0 \& \beta$ •2+ radio sources close to the Sun needed (Soja et al. EGU 2018)

2018-06-07 B.Soja et al.: Solar Corona Electron Density Models from Recent VLBI Experiments AUA020 and AUA029

15 jpl.nasa.gov

GEOSCIENCE AUSTRALIA

Estimation of PPN parameter γ (ICRF2)

In general relativity $\gamma = 1$

 $\Delta \gamma = 0.89 \ (+/-0.94) \cdot 10^{-4}$, i. e. better than from a global solution

GEOSCIENCE AUSTRALIA

© Ocommonwealth of Australia (Geoscience Australia) 2012

Testing general relativity with geodetic VLBI

Astronomy & Astrophysics manuscript no. 33459 July 19, 2018 ©ESO 2018

Testing general relativity with geodetic VLBI

What a single, specially designed experiment can teach us

O. Titov¹, A. Girdiuk², S. B. Lambert³, J. Lovell⁴, J. McCallum⁴, S. Shabala⁴, L. McCallum⁴, D. Mayer², M. Schartner², A. de Witt⁵, F. Shu⁶, A. Melnikov⁷, D. Ivanov⁷, A. Mikhailov⁷, S. Yi⁸, B. Soja⁹, B. Xia⁶, and T. Jiang⁶

- ¹ Geoscience Australia, Canberra, PO Box 378, ACT, 2601, Australia, e-mail: oleg.titov@ga.gov.au
- ² Department of Geodesy and Geoinformation, Research Group Advanced Geodesy, TU Wien, Gusshausstraße 27-29/E120.4, Wien-1040, Austria
- ³ SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, Paris, France
- ⁴ University of Tasmania, Private Bag 37, Hobart, Tasmania, 7001, Australia
- ⁵ Hartebeesthoek Radio Astronomy Observatory, PO Box 443, Krugersdorp, 1740, South Africa
- ⁶ Shanghai Astronomical Observatory, 80 Nandan Road, Shanghai, 200030, China
- ⁷ Institute of Applied Astronomy, Kutuzov Embankment, 10, Saint-Petersburg, 191187, Russia
- ⁸ National Geographic Information Institute, Space Geodetic Observatory, Sejong, PO Box 30060, South Korea
- ⁹ Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

Estimation of PPN parameter γ (OCCAM vs SOLVE)

Estimation of $\Delta\gamma\cdot 10^{-4}$

	OCCAM	SOLVE
0235+164 0229+131	1.64 +/- 1.29 0.32 +/- 2.83	1.85 +/- 1.48 -6.84 +/- 2.53
Both sources	0.89 +/- 0.94	-0.26 +/- 1.09

New global solution done by Sebastien Lambert using VLBI data since 1979 (6301 sessions, 12.6 millions delays) provides $\sigma = 0.92 \cdot 10^{-4}$ with AUA020 and $\sigma = 0.97 \cdot 10^{-4}$ without AUA020

GEOSCIENCE AUSTRALIA

Single VLBI experiment AOV022

1 May 2018 with 9 radio telescopes (Asia, Australia, South Africa, Europe, NZ), data correlated in Shanghai Astronomical Observatory

Post-fit residuals show a strong systematic depending on baseline. Strong source structure effect – needs to be cleaned

GEOSCIENCE AUSTRALIA

Conclusion

- 1. VLBI observations at small elongation angles are important
- 2. Solar corona could be estimated if two radio sources are measured at different elongation angles
- 3. AUA020 formal accuracy of the PPN parameter γ is better than 10^{-4}
- 4. Estimate of γ is sensitive to the coordinates of the reference radio sources

Australian Government

Geoscience Australia

Any Questions?

Thank you for your attention

Phone: +61 2 6249 9111

Web: www.ga.gov.au

Email: oleg.titov@ga.gov.au

Address: Cnr Jerrabomberra Avenue and Hindmarsh Drive, Symonston ACT 2609

Postal Address: GPO Box 378, Canberra ACT 2601