24th EVGA Working Meeting March 17-19, 2019, Las Palmas, Gran Canaria, Spain

CONT17 from a VieVS Perspective

Johannes Böhm, Sigrid Böhm, Daniel Landskron, Matthias Schartner

Vienna VLBI and Satellite Software (VieVS)

- VLBI analysis module
- Ray-tracer

•

. . .

Scheduling tool VieSched++

https://github.com/TUW-VieVS

Outline

- VLBI analysis of CONT17 networks
- Ray-traced delays for Intensives during CONT17
- Tropospheric delays from VLBI and ray-tracing
 comparison against other techniques at Wettzell
- CONT17 schedules with VieSched++

CONT17 networks

- Three independent networks
 - two legacy networks A and B in X/S band
 - 28 Nov. 2017 0:00 to 12 Dec. 2017 24:00
 - one network broadband
 - 4 Dec. 2017 0:00 to 8 Dec. 2017 24:00

Network	#stations	data rate	correlator	comment
Legacy A	14	256 Mbps	Socorro	VLBA
Legacy B	14	512 Mbps	Bonn	
VGOS-Demo	6(7)	8 Gbps	Haystack	

CONT17 A and B networks

CONT17 A CONT17 B

CONT17 VGOS network

VGOS Demo

VLBI Analysis 1/3

- Starting with vgosDB files "level4"
- ICRF3 source positions fixed
- IERS14 CO4 as a priori EOP
- VMF3 with surface pressure for zenith hydrostatic delays
- Atmosphere loading corrections (Vienna APL)
- Formal errors of observation increased by 1 cm²
- Outlier elimination based on 5-sigma test

VLBI Analysis 2/3

- Auxiliary parameters estimated as piecewise linear offsets
- Additional quadratic functions estimated for clocks

	PWLO interval	relative constr.	absolute constr.
Zenith wet delay	30 min	1.5 cm	-
Gradients	180 min	0.5 mm	1 mm to 0
Clocks	60 min	1.3 cm	-

- Global solution
 - Station coordinates w. NNR/NNT on subset of ITRF2014
 - EOP as 24 h PWLO (x-pol, y-pol, dUT1, X, Y)

CONT17	x-pol	x-pol	dUT1	X	Υ
	µas	μas	μs	μas	μas
Formal error A	25.4	28.4	1.0	23.6	23.8
Formal error B	27.7	26.6	1.7	24.4	24.9
Std. Dev. A/B	82.7	99.3	4.6	65.8	92.2

• More in-depth analysis is required

Baseline length repeatabilities

• Weighted BLR from CONT17 A and B and VGOS Demo

- Atmospheric data set from the Geodetic Observatory Wettzell during the CONT-17 VLBI campaign (Klügel et al., 2019)
- https://doi.pangaea.de/10.1594/PANGAEA.895518
- For example, radiosonde launches twice a day

Comparison against zenith wet delays from radiosondes (RS)

• Hydrostatic mapping functions from radiosonde data

TU Wien

TU Wien

- Multi-scheduling mode
 - more than 1000 schedules generated with various weight factors (sky-coverage, #obs, duration, ...)
 - more than 150 tested with Monte Carlo simulations (500 runs)
 - Tropospheric Turbulence

- Scale height 2 km, Cn = $1.8 \cdot 10^{-7} \text{ m}^{-1/3}$

- Clocks: random/integrated random walk 10⁻¹⁴@50min
- 30 ps white noise per observation

Schedules with VieSched++ for CONT17 B

- Finally two schedules selected out of the 150 schedules
 - same source list and fluxes as sked: v483
 - extended list with good sources: v036

	# obs	# scans
C1701	13499	1499
v483*	14921	1278
v036	15094	1478

*1000 schedules range from 11000 to 17500 observations

CONT17 simulations: Earth orientation parameters

• Repeatability from Monte Carlo simulation

CONT17 simulations: Earth orientation parameters

• Repeatability from Monte Carlo simulation

Schedules with VieSched++ for CONT17 VGOS Demo

- Core network: GGAO12M, WESTFORD, KOKEE12M, RAEGYEB
- Tagalong: ISHIOKA, ONSA13NE, ONSA13SW, WETTZ13S
- 30 seconds scans, same down-times
- Finally two schedules used
 - same source list and fluxes as sked: v066
 - extended list with good sources (> 250 mJy): v058

	# obs	# scans	
17DEC03VS	12985	1180	
v066	21041	1948	
v058	21061	1985	

Schedules with VieSched++ for CONT17 Mixed Mode

• All CONT17 stations (36 stations) for 24 hours

Schedules with VieSched++ for CONT17 Mixed Mode

• Baselines

data rate	# basel.	combination
S: 128 Mbit/s	399	XA-XA, XA-XB,XA-BR
S: 192 Mbit/s	203	XB-XB, XB-BR
S: 2048 Mbit/s	28	BR-BR

• Baselines

We did not consider different polarizations in calculation of integration time

Schedules with VieSched++ for CONT17 Mixed Mode

- Results
 - Number of scans: 2016
 - Number of observations: 126592
 - Average idle time: 2.4 %

- Next steps
 - run Monte-Carlo simulations
 - adapt simulated noise per observations (now 30 ps)
- Questions
 - How to treat polarization in the calculation of the integration time?

Summary

- The Vienna VLBI and Satellite Software (VieVS) is umbrella for
 - VLBI analysis software
 - Scheduling tool VieSched++
 - Raytracing tool
 - ...
- CONT17 is very good testbed to test and combine these efforts
- Could CONT2020 be observed in mixed mode?

Thanks for your attention!

EVGA 2019

24th Meeting of the European VLBI Group for Geodesy and Astrometry

3rd IVS VLBI Training School

Gran Canaria, Spain March 17-19, 2019

Vienna VLBI and Satellite Software (VieVS)

CONT17	x-pol	x-pol	dUT1	X	Y
	μas	μas	μs	μas	μas
Formal error A	25.4	28.4	1.0	23.6	23.8
Formal error B	27.7	26.6	1.7	24.4	24.9
Bias A/B	23.5	-224.4	-13.6	-27.0	-45.5
Std. Dev. A/B	82.7	99.3	4.6	65.8	92.2

- Large residuals in some CONT17 B datum stations
- For same reason, EOP from VGOS had to be de-trended
 - we need more VGOS data to derive station coordinates

Earth Orientation Parameters

Earth Orientation Parameters

• Celestial pole offsets w.r.t. IERS14 C04 in μas

Y

Intensives INT1 with ray-traced delays

• Standard deviation w.r.t. CONT17 B: 11 μs (CONT17 A: 13 μs)

- Zenith wet delays at Wn, Wz, and Ws
- Standard deviations between series at 5 to 6 mm level

