
Proceedings of the 7th European VLBI Network Symposium
Bachiller, R. Colomer, F., Desmurs, J.F., de Vicente, P. (eds.)
October 12th-15th 2004, Toledo, Spain

VSI-E Software Suite
D. Lapsley1 and A. Whitney1

MIT Haystack Observatory, Off Route 40, Westford, MA 01886, USA

Abstract. As broadband access to high speed research and education networks has become increasingly available to radio
telescopes around the world the use of e-VLBI has also increased. High bandwidth e-VLBI experiments have been achieved
across wide areas [5]. e-VLBI has also been used for the transfer of data from “production” experiments. As the use of e-VLBI
becomes more and more prevalent, the need to have some form of standard framework for facilitating interoperability between
various acquisition, transport and processing systems around the world is becoming increasingly important. This is the motivation
behind the VLBI Standard Interface – Electronic (VSI-E) standard. VSI-E is currently in draft form [2] and is going through the
standards process within the VLBI community. In this poster, we describe an initial reference implementation of the VSI-E
protocol. The implementation has been done using the C/C++ language and is in the form of a re-useable library. It has been
developed on the Linux platform and can be easily ported to most POSIX-compliant platforms. The reference implementation
also includes a high-performance application level transport protocol. That can be used to transport data within the framework of
VSI-E.

1. Introduction

As the use of e-VLBI becomes more and more prevalent, so
the importance of a standard framework for the transport of
VLBI data across wide area networks and between various data
acquisition and data processing systems increases.

VSI-E was first discussed in detail at the Second e-VLBI
Workshop in Dwingeloo, The Netherlands [1] in May 2003. A
draft VSI-E specification was subsequently distributed in early
2004 [2]. The main objectives of VSI-E are:

1. Interoperability: through a common data format.
2. “Internet Friendliness”: through the use of protocols that

are well known and well understood throughout the Internet
community.

3. Ease of Implementation: through the use of existing and/or
new libraries.

4. Transport flexibility: through the use of a framework
that will allow users to choose their transport mecha-
nism/protocol to suit their network and/or throughput re-
quirements.

For this reason, the draft specification[2] proposes the use
of extensions to the Internet Engineering Task Force (IETF)
Real-time Transport Protocol (RTP)[3] suite of protocols for
the transport of e-VLBI data. RTP is able to meet all of the
objectives above.

In this poster, we provide a brief description of the VSI-E
protocol. We then describe a reference implementation of the
VSI-E protocol that is available to the VLBI community[4].

2. VSI-E

VSI-E makes use of the RTP suite of protocols[3]. This in-
cludes two protocols:

1. RTP: which provides a means for encapsulating real-time
data streams and transporting them across Wide Area
Networks while maintaining timing synchronization.

2. The Real-time Transport Control Protocol (RTCP): which
provides a control channel for RTP streams that is
used to exchange management information as well as
sender/receiver-side statistics and timing synchronization
information.

RTP has been used within the Internet community for many
years to transport real-time data streams. Because of this, there
is an active community of users, and there is a wealth of in-
formation about the implementation and operation of RTP that
can be drawn upon. RTP has been designed with scalability and
extensibility in mind. It is considered “Internet friendly” within
the Internet community and can be easily extended to accomo-
date e-VLBI requirements. For more information on the use of
RTP to transport VLBI data, refer to the VSI-E draft specifica-
tion [2].

3. VLBI Real-time Transport Library

In this section we discuss a reference implementation of the
draft VSI-E specification described in the previous sections.
Due to space limitations, we will only describe highlights of the
system. This implementation was initially done using C/C++
on a Linux Redhat 9.0 system. It is easily portable to most
POSIX-compliant UNIX systems.

The main design goals of this implementation were:

1. Performance: targeted transfer rates as close to line rate as
possible.

2. Ease-of-use: C++ classes that encapsulated large amounts
of functionality and provided a simple, high-level interface
that would give users the capability to create powerful pro-
grams with minimum effort.

3. Flexibility: provide the capability to use different transport
mechanisms/protocols for input/output

The library developed provides a number of C++ classes
(or software modules) that encapsulate various system and
protocol-level functionality:



292 D. Lapsley and A. Whitney: VSI-E Software Suite

!"#$%&'(&'%)*+&,

!"#$%&'()*"#$

!"#$%)*+&,

+&&,-./&%*
+&&,-./&%*

%)*+&,

"#$%)*+&, -./0%)*+&, -1$%)*+&,

!"$%)*+&,

!"#$%&'()*"#$

!"#$#2/&.,%)*+&,

!"#$%&'()*"#$

3!%&'(&'%)*+&,

!"#$%&'(-0)*"#$
!"#$%&'("/&)*"#$
1234!"#$%&'(,&#5)*"#$

3!#2/&.,%)*+&,

!"#$%&'(-0)*"#$
!"#$%&'("/&)*"#$
1234!"#$%&'(,&#5)*"#$

3!%)*+&,

!"#$%&'(-0)*"#$
!"#$%&'("/&)*"#$
1234!"#$%&'(,&#5)*"#$
6"-7(,/0),&589
6"-7(,/0),&#589

"4'&56

3"0&,":(4:;0%

<;&;(4:;0%

+55:-#;&-"0(
4:;0%

!"$%&77/).

8/2&%)*+&,

Fig. 1. Class Hierarchy

1. Mutex and Guard classes encapsulate Mutual Exclusion
system calls used to serialize concurrent access of data from
multiple threads.

2. A Thread class encapsulates POSIX threads.
3. Socket and derived classes encapsulate TCP, UDP, Unix

Domain and VLBI Real-time socket functionality using the
same programming interface. A FileSocket is also included
in this family of classes to provide a uniform access inter-
face.

4. RTCPSocket and derived classes encapsulate RTCP control
message transfers.

5. RTPSocket and derived classes encapsulate RTP data mes-
sage transfers.

6. An RTPSession class encapsulates an RTP session’s state
information.

7. VRSocket and derived classes encapsulate application layer
functionality and interactions.

Figure 1 shows a cut-down UML diagram of a portion of
the library’s C++ class1. hiearchy. Base classes are in white
and implement functionality common to a group of classes.
Classes that can be used by users are shaded. The classes can
be divided into three levels: control plane, data plane and appli-
cation plane. In order to use the library, a user would normally
start by creating connections between two machines through
the use of data plane objects (e.g. TCPSocket). Typically,
two connections would be created (one for RTP data and
the other for RTCP control messages). Then RTCPSocket ob-
jects and RTPSocket objects would be created on top of the
data plane messages (note that an RTPSocket is at a higher
level in the data plane). Finally, the application layer ob-

1 For reader’s unfamiliar with C++: a “class” can be considered a
software module that encapsulates data and the operations performed
on data in a manner that is easy to use and integrate with other
“classes”; “inheritance” is a technique that allows a “child” class to
“inherit” all of the functionality of a “parent” class

jects VRServerSocket and VRClientSocket could be built on
top of the RTPSocket and RTCPSocket. At this point, the
user would call the rtp proc() and rtcp proc() methods of the
VRServerSocket and VRClientSocket objects to start data and
control message transfer. This model provides significant pro-
gramming flexibility for the user. In particular, it allows the
user to choose the order in which connections are setup and
what transport protocols are used to transport data. For exam-
ple, a user could create a program that used TCP to transport
RTCP control messages and TCP to transport RTP data across
a shared IP network. Another user may have a dedicated net-
work and wish to use UDP instead. This can be done by chang-
ing a few lines of code. Yet another user may wish to use a
proprietary, high-performance protocol of their own design to
transport data across shared networks. The library has been de-
signed to allow users to extend it in such a manner seamlessly.

The library has also been used to build an application that
is available for people to use to transfer data without any pro-
gramming effort.

4. Summary

In this poster, we have discussed the increasing importance of
VSI-E as the use and extent of e-VLBI continues to increase.
We have briefly described the objectives of VSI-E and the cur-
rent draft VSI-E specification. We have also described a ref-
erence implementation of the draft specification that provides
a flexible, powerful framework that can be used to construct
VSI-E compatible applications.

References

2nd eVLBI Workshop Website, May 15–16 2003,
http://www.jive.nl/evlbi ws/meeting.html

VLBI Standard Interface Electronic - Draft Specification
- VSI-E, Revision 2.7, 28 January 2004, available at
http://web.haystack.mit.edu/staff/dlapsley/VSI-E-2-7.pdf.

Schulzrinne, H. et al, RFC3550: RTP: A Transport
Protocol for Real-Time Applications, available at:
http://www.ietf.org/rfc/rfc3550.txt

VSI-E Reference Implementation, available at
http://web.haystack.mit.edu/staff/dlapsley/vsie.html.

Whitney, A., et. al, “The Gbps e-VLBI Demonstration
Project”, February 2003. Available at
ftp://web.haystack.edu/pub/e−vlbi/demo report.pdf


