

The Water Vapour Radiometer at Effelsberg

A. Roy U. Teuber R. Keller

The Troposphere as Seen from Orbit

Method: Synthetic Aperture Radar (Earth Resources Satellite) Frequency: 9 GHz Region: Groningen Interferograms by differencing images from different days

5 km 5 km 6 km

Internal waves in a homogenously cloudy troposphere

Hanssen (1997)

v = 18 to 26 GHz $\Delta v = 900$ MHz Nchannel = 25 Treceiver = 200 K $\sigma = 61$ mK per channel sweep period = 5 s

The Scanning 18-26 GHz WVR for Effelsberg

Max-Planck-Institut für Radioastronomie

Front-end opened

Control unit

First light, April 2002, Bonn

• gain stability: 2.7x10⁻⁴ over 400 s

• sensitivity: 61 mK for τ_{int} = 0.025 s (0.038 mm rms path length noise for τ_{int} = 3 s)

WVR Panorama of Bonn

Move to Effelsberg

March 20th, 2003

WVR Panorama of Effelsberg

 Water-Vapour Radiometer, Effetaberg, 21 to 25 Mar 2003
 Red: 29.35 GHz
 Green: 22.23 GHz
 Blue: 24.35 GHz

 WVR construction: U. Tewber & R. Keller
 Projectisidentist: A. L. Roy
 Image rendering in IDL: A. Berlania/

Scattered Cumulus, 2003 Jul 28, 1300 UT

Storm, 2003 Jul 24, 1500 UT

Validation of Opacity Measurement

Move to Focus Cabin

March 16th, 2004

WVR Path Data from 3 mm VLBI, April 2004

VLBI Phase Correction Demo

- RMS phase noise reduced from 0.88 mm to 0.34 mm after correction.
- Coherent SNR rose by 68 %.

Max-Planck-Institut

für Radioastronomie

Conclusion

- Effelsberg has a WVR
- Opacities agree with those from 100 m RT
- Stability is 2.7×10^{-4} in 400 s
- Sensitivity is 61 mK in 0.025 s integration time

Future

- Validate phase correction (2004 Apr 3 mm VLBI campaign)
- Validate zenith total delay (2005 Mar geodetic campaign)
- Software for archive and export to AIPS (Rottmann, RadioNet)
- Hardware: (once usefulness established)
 - improve temperature stabilization
 - reduce spillover with new feed?
 - improve integration time efficiency
 - better beam overlap: move to prime focus receiver boxes

WVR Performance Requirements

Opacity Measurement

Aim:correct visibility amplitude to 1 % (1 σ)WVR spec:absolute calibration accuracy \leq 14 % (1 σ)thermal noise per measurement \leq 2.7 K.

Tropospheric Phase Correction

Aim: coherence at 86 GHz = 0.9 over 300 s requires $\leq \lambda / 20$ path

Zenith Wet Delay Measurement

Aim: 1 mm absolute error on zenith wet delay

Opacity Statistics at Effelsberg

Zenith Delay using GPS

Water-Vapour Radiometry Basics

Max-Planck-Institut für Radioastronomie

Gain Calibration

WVR Control Panel

Beam overlap, April 2003

Beam overlap, April 2004

Future Developments

- Validate phase correction (3 mm VLBI from 2004 April 16-20)
- Validate zenith total delay using geodetic VLBI (2005 Mar campaign)
- Software development: (Rottmann, FP6 RadioNet, started May 3) data paths into AIPS and CLASS data archive online (web-based) real-time display
- Investigate limitations on calibration accuracy
- Hardware development: (once usefulness established) temperature stabilization: spillover: reduce with new feed?
 integration time efficiency: beam overlap:

- WVR installation complete; WVR now running
- Opacities agree with those from 100 m RT
- Validation of phase-correction data in progress
- Web-based display & archive access coming soon
- Radiometer stability is 2.7×10^{-4} in 400 s
- Radiometer sensitivity is 61 mK in 0.025 s integration time

Get data at: http://www.mpifr-bonn.mpg.de/staff/aroy/wvr.html