86GHz VLBP of OVV 1633+382 after a major mm flare

Sohn (MPIfR/KVN), Krichbaum (MPIfR), Agudo, Witzel, Zensus, Ungerechts (IRAM), Teraesranta (Metsaehovi)

Overview

- OVV 1633+382
- 3mm VLBP monitoring
- D-term correction
- EVPA check
- AGN at mm wavelength
- mm VLBP
- mm VLBI with KVN

OVV 1633+382 (4C 38.41)

- z=1.814, QSO, Optically Violently Variable (OVV)
 ΔB ~ 3 mag (redshifted UV) (Barbieri et al. 1977)
- Gamma-lay bright AGN ~ 5 10⁴⁸ ergs s⁻¹ (0.1-100GeV EGRET, Mattox et al. 1993)
- Core-dominated radio feature (Murphy et al. 1993, Poladitis et al. 1995) at 1.6 GHz
- Superluminal jet components up to 10c (Barthel et al. 1995 & Xu et al.1998, Jorstad et al. 2001) ~ sub mas per year
- flat spectrum, cm & mm variable
- major mm flare 2001-2002, inversed spectrum
- => explore innermost region during/after a major flare : kinematics, spectral & polarization evolution

Poladitis et al 1995

Maximum: 2.059 JY/BEAM Contours (%): -0.15 0.15 0.30 0.60 1.20 2.40 4.80 9.60 19.20 38.40 Contours (%): 76.80 Beam: FWHM 8.33 × 2.56 mas, p.a. -18.3° File: 1633+382.cmp_n (29-Sep-1994 19:43)

Observations (still on-going)

Table 1. Observation Epocl	hs
----------------------------	----

Date	$\operatorname{Stations}^{\operatorname{a}}$	Notes
12 Jun 2002	FD KP LA NL OV MK	b
$28 \mathrm{Aug} 2002$	FD \mathbf{KP} LA NL OV PT MK	C
01 Nov 2002	FD \mathbf{KP} LA NL OV PT MK	b
03 Jan 2003	FD KP LA NL OV PT MK	
20 Mar 2003	FD KP \mathbf{LA} NL OV PT MK	
23 Jun 2003	FD KP LA OV PT MK	

6 epochs at 86 GHz

VLBACPOL failed in the first 3 epochs. Source evolution or System evolution?

Conservative Band Cal. Flagging the first and the last channels of each IF

^a bold faced characters indicate the reference antenna

- ^b no cross pol. detection
- $^\circ\,$ offset in RCP/LCP IF4 in D-terms

The last three of the six usual calibration steps as at 22 & 43 GHz, multi IF mode LPCAL

D-terms, LA

D-terms, KP

Offset correction in EVPA (no p-cal...)

86GHz VLBP 1633+382

86GHz VLBP 1633+382

86GHz VLBP 1633+382

single dish sub mm polarimetry

G. Siringo et al.: A new polarimeter for (sub)millimeter bolometer arrays

Fig. 4. Polarization position angle of 3C 279 in the 7 days of observations. The variation is $\sim 14^{\circ}$. The linear fit gives a correlation coefficient of 0.97.

Fig. 5. Position angle of QSO B1633+382 in the 7 days of observations. There is no evidence of variability.

757

1633+382 at 43GHz varying pol. angle...

1633+382 at 43GHz varying pol. angle...

3C345 at 86GHz (Calibrator...)

3C345 at 86GHz (Calibrator...)

3C345 at 86GHz (Calibrator...)

3C345 at lower freq.

E. Ros et al.: Total intensity and polarized emission of the parsec-scale jet in 3C 345

Fig. 9. VLBA *I*, *p* and χ images of 3C 345 at 22 GHz, epoch 1995.84. The total intensity *I* is represented with contours (value of 6 mJy/beam× – 1, 1, 2.24, 5, 11.18, 25, ...), superimposed over a grey scale polarized intensity map (peak of brightness of 112.4 mJy) and the superimposed electric vectors (χ , length proportional to *p*, 1 mas in the map is equivalent to 100 mJy/beam).

63

VLBP at 86 GHz

- is possible, but be patient.
- 1633+382 varying too fast. (>100c?)
 - or opacity?
 - high [B * n_e] media with low filling factor ?
 - very low linear pol. after mm flare
 - source evolution or system evolution ?
- Calibrators are varying too...
 Sources are different at mm wavelength (resolution + opacity)?

Better baseline & image sensitivity are needed. (*at mm wavelength*)

mm VLBP study of AGNs is interesting..., and probably very important

- SKA will be great, but cm facility (Opacity problem (dust torus, SSA), resolution ...).
- ALMA will be great, but on the southern hemisphere (RM from G-Plane, GC plus Maggellanic stream, e.g. Kronberg et al).

– be aware that $RM_{o.f.}$ prop. to $(1+Z)^{-2}$

Sensitive mm VLBI on the northern hemisphere will be a great asset for AGN study...

sub-mas structure beyond opaque media...

KVN included mm VLBI ...

- At the expense of FoV..., sensitive imaging is possible (long t_{int} at 3mm will be possible).
 - For wide FoV, you could use local (e)VLBI facilities (e.g. EVN, VLBA, VERA + KVN, ...)

Summary and Outlook

- 3mm VLBP is possible (without magic).
 - (mm)VLBI(P) could survive quite long.
 - since there are resolution, sensitivity, *opacity*-frequency, and space (n. h.) gaps.
 - Study of inner most AGN structure will benefit from filling the gaps.

mm VLBI could be more than a niche product...

- 8th EVN, more physics of 1633+382
- 10 (+ 1) th EVN, KVN included 2 & 3mm
 VLBP