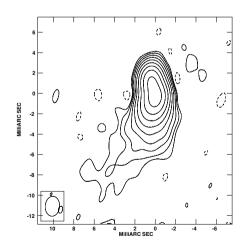
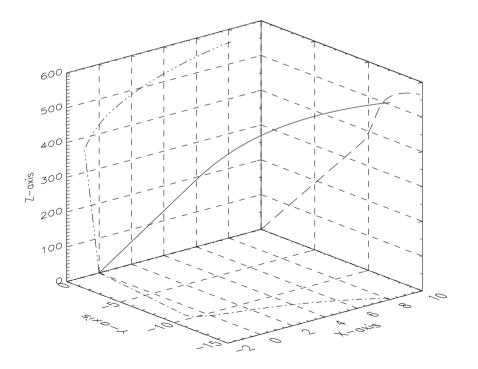
Intermediate Scale Structures in BL Lac Objects

Cormac Reynolds, JIVE, T. Cawthorne, UCLAN, D. Gabuzda, UCC


October 12, 2004

Introduction

BL Lac objects:


- Are blazars rapidly variable polarized radio emission
- Have low emission line luminosities
- It has been suggested that they are beamed counterparts to low luminosity FR 1 radio galaxies.
- Show complicated VLBI structure, but are often approximately point sources to the VLA.

Parsec-scale Jets

- Initially relativistic.
- Often do not survive on to arcsecond scales.
- ullet e.g., 3-D trajectory modelling of BL Lac suggests deprojected scales of ~ 1 kpc.

Intermediate Scale Emission

- A number of the most famous BL Lacs appear as (near) point sources to the VLA.
- But the flux density recovered in VLBI images is less than seen by the VLA.
- → emission on intermediate scales.
- The luminosity in the inferred intermediate scale structure can be quite high.
 - This may have implications for BL Lac/FR I unification schemes.
- Attempt to image the intermediate scale emission by going to low frequency.
 - Is likely to be steep spectrum.
- VLBA observations at 2.3 GHz, 1.7 GHz, 600 MHz, 300 MHz.

Source Selection

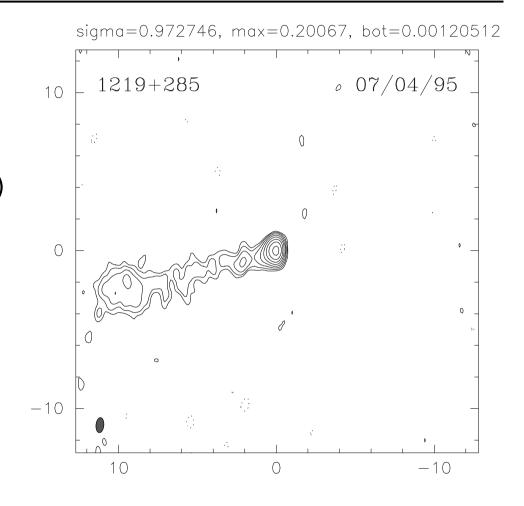
Based on previous simultaneous VLBI and VLA images.

Intermediate scale (I.S.) flux densities.

Source	Inferred I.S.	Inferred I.S.	Inferred I.S.
	$I/\!(Jy)^\mathrm{a}$	p /(Jy) $^{ m a}$	χ /(deg) $^{ m a}$
1219+285	0.22	0.011	-88
1803+784	0.59	0.058	58
BL Lac	0.43	0.019	37
0735+178	0.87	0.020	85
0954+658	0.21	0.033	-50

^a Gabuzda et al. (1992, 1994)

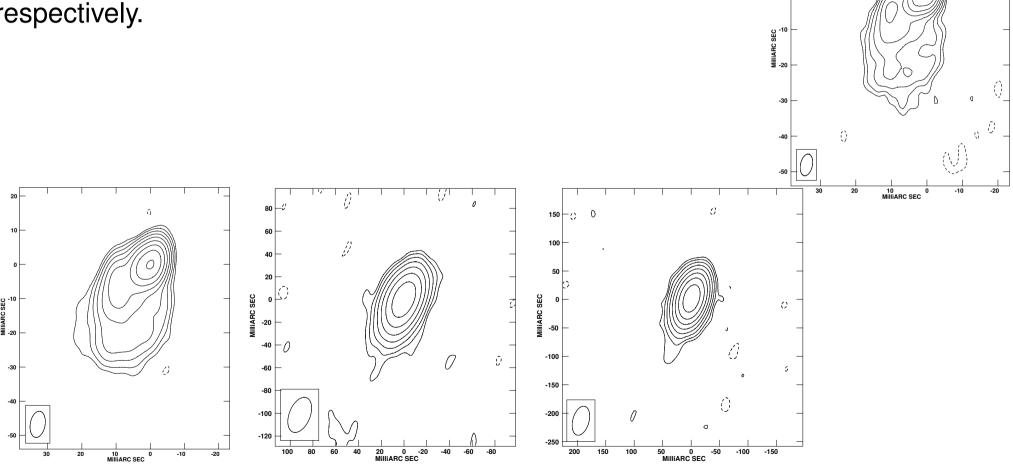
The intermediate scale flux density has luminosity above the FR I/FR II division.


Here we present the first two sources: 1219+285 and 0735+178.

1219+285

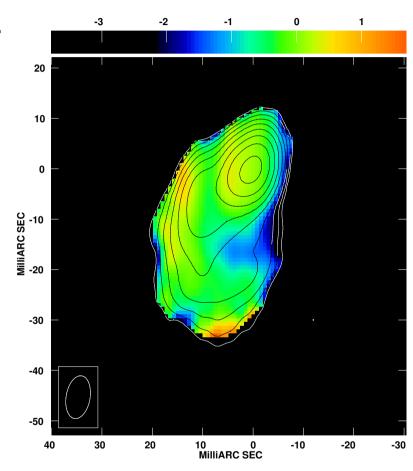
Source details:

- z = 0.102
- VLBI jet extends to east of the core, then turns south (e.g. Mantovani poster)
- Superluminal components.
- Unresolved to VLA D-array (Kollgaard et al. 1992).



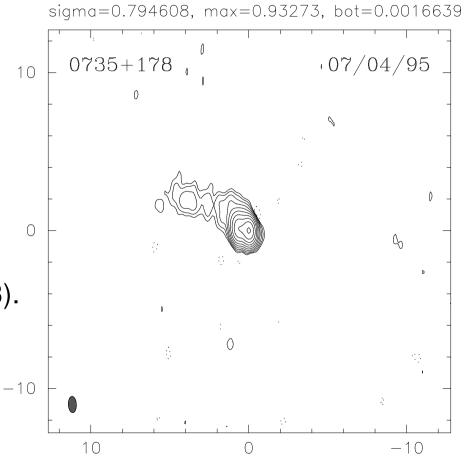
from VLBA 2 cm survey: "A long thin jet terminates in a prominent extended component."

1219+285 - Images


Peak emission at 0.38, 0.38, 0.66 and 0.68 Jy/beam, respectively.

1219+285 - Results

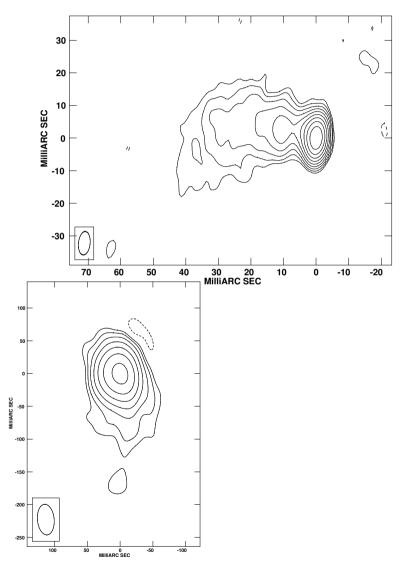
- Diffuse emission to south, ⊥ to known VLBI jet.
- Jet appears to change direction sharply.
- Increased brightness and flatter spectral index (see right) at point where jet begins to bend.
- Less than 50% of the expected I.S. flux is detected.
- No evidence for additional extended emission at the lowest frequencies.
- Luminosity in the intermediate scale structure $\sim 2.2 \times 10^{24} \ \mathrm{W \ Hz^{-1}}$

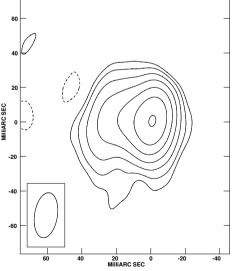


0735 + 178

Source details:

- $z \ge 0.424$ (absorption lines)
- VLBI jet extends to northeast of the core.
- Superluminal components, and apparent bends of 90°.
- Unresolved to VLA (Kollgaard et al. 1992, Ulvestad et al., 1983).




from VLBA 2 cm survey: "The jet has multiple sharp curves".

0735+178 - Images

0735+178 - Results

- Jet beginning to turn towards south.
- Most of the expected I.S. flux is detected.
- Again, no firm evidence for additional emission at the lowest frequencies.
- Luminosity in the intermediate scale structure $\sim 6.1 \times 10^{25}~{
 m W~Hz^{-1}}$

Summary

- Coherent structures are detected in 1219+285 and 1803+784 on scales of $\sim 30~{\rm pc}$ from the core.
- In 0735+178, almost all of the predicted I.S. flux is detected.
 - The new structures appear to be associated with a well-collimated jet.
- In 1219+285, a reasonable ($\sim 50\%$) fraction of the predicted I.S. flux is detected.
 - Diffuse possibly plume-like emission is detected in 1219+285.
 - The luminosity in the diffuse structures in 1219+285 is at the lower end of the FRI/FRII divide.
 - The remaining "missing flux" has a power above the FR I/FR II divide.
- The polarization may provide information on interactions with the IGM (Faraday rotation, shear interactions, etc.).
- 3 more sources are available in the current sample. EVN/MERLIN data to come...