Probing the nature of the ISM in Active Galactic Nuclei through HI

Raffaella Morganti (ASTRON)

Gas: essential tool to explore the nuclear regions of galaxies

Cen A, VLT Marconi et al.

- mass of the Black Hole
- structure of the torus
- circumnuclear disks

- gas outflows (optical, X-ray, UV)

influence on the ISM

feedback

obscuration unified schemes

^{3 Lightyears} VLTI, Jaffe et al.

All the phenomena described above can be observed in the HI: why is this important?

The study of these different phases of the gas is important

- stratification of the different phases of the gas
- to which phenomena are they associated ?
- provide constraints for theoretical models

HI detected in absorption against a strong continuum to study the neutral hydrogen on the sub-arcsec scale around the AGN (HI in emission cannot be detected – even SKA will not manage at such high resolution)

Overview of recent results and some future perspectives

HI absorption detected in various type of radio loud AGN

 $S c_f S_c (1 e)$

- Typical optical depth for radio galaxies is $\tau \rightarrow 0.01 - 0.05$
- Objects with τ~0.1-0.2 are detected especially among Seyferts.

- Interesting \rightarrow some among CSS/GPS radio sources but not among radio galaxies.

rms noise ~0.5 mJy/beam/ch a 3σ detection of τ =0.02 can be reached only for sources >75 mJy: easy for CSS/GPS; more difficult for the cores of radio galaxies (bias in the detection rate)

Typical HI column densities detected: 10¹⁹ - few times 10²⁰ cm⁻²

for T_{spin} =100 K \rightarrow BUT T_{spin} can be up to few 1000 K

column density for the HI detected in absorption against Ly $\alpha \rightarrow$ up to 10¹⁸ cm⁻² HI absorption @21cm probes gas with higher column densities

Study of these phenomena using HI in absorption

HI associated with circum-nuclear tori/disks

Stratification of the gas:

because of the strong energetic X-ray source in the centre, the gas is mostly ionized close to the centre

 \rightarrow increasing fraction of atomic and molecular gas with increasing distance

from Pihlström PhD thesis Maloney et al.

not easy to detect the kinematical signature of a rotating torus/disk: limited by underlying continuum

In Seyfert galaxies HI absorption traces (few) 100 pc-scale rotating disks (Gallimore et al.1999) → HI suppress in the centre by free-free absorption

Nuclear tori: NGC 4151

Exception: NGC 4151

torus 70pc in radius, 50 pc height derived from the location of the HI absorption (at larger radii, molecular hydrogen)

Circumnuclear tori/disks in radio galaxies

ASTRON

Two dynamical systems:

- E side narrow HI absorption, co-spatial with dust-lane and with similar velocity gradient (~50 km/s/acrsec) as the ionized gas
- W side, broader HI absorption detected with higher velocity gradient. Could be a nuclear disk.

Compact Symmetric Object 1946+708

$$\begin{split} \tau &\sim 0.2 \\ FWHM = 350 \text{ km/s} \\ N_{HI} &= 3 \times 10^{23} \text{ cm}^{-2} \\ \text{for } T_{\text{spin}} &= 8000 \text{ K} \\ M &\sim 10^8 \text{ M}_{\text{sun}} \end{split}$$

broad line \rightarrow thick torus narrower line \rightarrow gas further out

 some of the HI absorption features are associated with circumnuclear tori or disks

- not always easy to find clear kinematical signatures
- HI absorption can be due to more than one structure

Infall/outflow of the HI

Infalling gas feeding the AGN?

...more on Cygnus A

density (mJy) -20 Flex Conway & Blanco 1995 -40 Systemic velocity ~ 60) velocity (km/s) -600 ~400 -200 200 400 600 from stellar absorption lines V_{sys}=16774 km/s 250 km s kpc redshifted features H_2 spectra а 16950 km/s Bellamy et al. 2004 NIRSPEC/Keck b ASTRON velocity EVN Symposium - Toledo, Oct 2004

20

Accurate measure of the systemic velocity is crucial. Extra complication \rightarrow cases where different redshifts are derived from different optical emission lines

Accurate measure of the systemic velocity is crucial. Extra complication \rightarrow cases where different redshifts are derived from different optical emission lines

Accurate measure of the systemic velocity is crucial. Extra complication \rightarrow cases where different redshifts are derived from different

HI outflows

Exploring the low optical depth "territory" or what can we see if the source is strong enough!

Why not seen before? <u>broad-band available</u> (+ sensitivity)

- So far, 7 cases of broad (up to 2000 km/s) HI absorption found (mainly low resolution (arcsec) observations so far)
- Very low optical depth ($\tau \sim 0.001$) \rightarrow need very strong radio continuum to be detected (bias!)
- The broad HI is *mostly* blueshifted compared to the systemic velocity \rightarrow outflows

A recent new case: the compact radio source OQ208

known to have fast outflow in the broad emission lines (Marziani et al.)

particularly rich medium from
X-ray absorption:
radio jets possibly piercing their
way through a Compton-thick medium
pervading the nuclear environment
(Guainazzi et al. 2004)

Optical depth of the peak absorption $\tau \sim 0.005$

The neutral gas needs to be accelerated to velocities many times its local sound speed: how this is done is not yet clear

Physical parameters of the outflows (under many assumptions!)

 Column densities: few x 10²⁰ cm⁻² (for T_{spin}=100K) assuming the HI uniformly covers the radio source but can go up to few x 10²¹ -- 10²² cm⁻² if the HI is localized (e.g. 4C12.50?)
Density of the neutral hydrogen: again very depended of the location/size from 0.2 cm⁻³ (3C293) to 30 cm⁻³ (e.g. OQ208).

• HI masses involved: wide range, from $\sim 10^3$ M_{sun} up to 2x10⁶ M_{sun}

• log Energy flux $\sim 40 - 41.5$ erg/s of the HI outflows

The information on the location of the outflows is crucial but still very poor: VLBI broad-band data are needed for this.

ASTRON

Indirect evidence for the HI outflow at ~1kpc of the nucleus of 3C293

Blueshifted wing of ionized gas at location of lobe: striking similarity with the HI

What produces the HI outflows?

Outflowing Broad Emission Line Clouds (BELC)

ASTRON

- they will expand and cool adiabatically

- they will reach 1000K at ${\sim}3pc$ where they can form dust

- as they cool even further, HI will also form

Elvis, Marengo & Karovska 2002

Interaction between the radio jet and ISM

Energy flux from the radio jets
log F_E ~ 42 − 42.4 erg/s
→ efficiency between 0.01 and 0.1

From numerical simulations: cool gas can be produced in jet/cloud interaction (Mellema et al., Fragile et al.)

- Neutral hydrogen around AGN is telling us about a variety of phenomena!
- They can co-exist
- Because of this the interpretation can be complicated

Many open questions that can be answered only with sensitive, broad-band & high resolution VLBI observations:

- the occurrence of HI in tori *vs* larger scale circumnuclear disks: how many cases like Cygnus A? relation with studies of the free-free absorption: insight on the structure of the tori
- differences between different radio morphologies (e.g. FRI vs FRII)
- information on the (dense) medium: e.g. relation with polarization studies?
- how common are broad and low optical-depth absorption features
 - → they trace different phenomena than usually expected to have HI associated with: constraints for the theoretical models
- some phenomena (e.g. outflows) can only be studied at such high resolution in radio

What can we do more with present-day radio telescopes

More objects where HI is imaged on the VLBI scale (combined with information in other wavebands!)

Relation with studies of free-free and polarization

Importance of sensitive and broad band observations

 \rightarrow so far underestimated the importance of broad-band observations

need bandpass stability $\rightarrow 10^{-4}$

The role of SKA will be crucial

Optical depth $\tau \sim 0.01$ will be detected for sources as weak as few mJy (like searching for HI absorption every source in the NVSS catalogue!) \rightarrow explore the uncharted region of low luminosity AGN and weak cores

"Blind" search:

- interesting (& successful) for HI emission in nearby galaxies
- so far no detection of HI in absorption:

deep fields selected to have only weak sources

The role of SKA will be crucial

Optical depth $\tau \sim 0.01$ will be detected for sources as weak as few mJy (like searching for HI absorption every source in the NVSS catalogue!) \rightarrow explore the uncharted region of low luminosity AGN and weak cores

"Blind" search:

- interesting (& successful) for HI emission in nearby galaxies
- so far no detection of HI in absorption:

deep fields selected to have only weak sources

- Neutral hydrogen around AGN is telling us about a variety of phenomena!
- They can co-exist
- Because of this the interpretation can be complicated

Many open questions that can be answered only with sensitive, broad-band & high resolution VLBI observations:

- the occurrence of HI in tori *vs* larger scale circumnuclear disks: how many cases like Cygnus A? relation with studies of the free-free absorption: insight on the structure of the tori
- differences between different radio morphologies (e.g. FRI vs FRII)
- information on the (dense) medium: e.g. relation with polarization studies?
- how common are broad and low optical-depth absorption features

→ they trace different phenomena than usually expected to have HI associated with: constraints for the theoretical models

• some phenomena (e.g. outflows) can only be studied at such high resolution in radio

.....

Not all the broad absorption features are outflows?

PKS 1549-79 with LBA

HST - Hα+cont Tadhunter et al.