What is the primary beam response of an interferometer with unequal elements?

Richard Strom ASTRON & University of Amsterdam

Rationale: comments such as –

- I want an in-beam reference source...
 Hmm...
 - The largest element in the array has a FWHM beam of 9' arc...
 - I guess I should look for a source within 4.5' arc of my target...
- Anything wrong with this? Uh, yes...

We all know the FWHM of a radio telescope:

- For a 25 m dish, ~30' arc at 18 cm; ~10' arc at 6 cm;
- For a 100 m dish, ~7.5' arc at 18 cm; ~2.5' arc at 6 cm;
- r ...etc.
- An interferometer then? For the VLBA it's simple: all elements are 25 m.

What's the EVN situation?

Diameter	Station(s)
200 m (illuminated)	Ar
100 m	Eb
(14 x 25 m)='90 m'	Wb
76 m	Jb1
70 m	Rb70
32 m	Cm,Mc,Nt,Tr,Rb34
25 m/85 ft	Hh,Jb2,On85,Ur,Sh
20 m	On60, Wz

What happens with unequal elements, as in the EVN?

- Might guess that the beam will be some average of the two elements...
- Everyone should know that for elements with area A₁, A₂ and T_{sys} of T₁, T₂, the interferometer area and T_{sys} will be:

 $A_{12} = (A_1 A_2)^{1/2} \& T_{12} = (T_1 T_2)^{1/2}$

Consider the beamshape of a single dish

- The antenna response, A, is the FT of the autocorrelation of the aperture illumination, $v : v * v \Rightarrow A$
 - ($\Rightarrow \equiv$ FT; * \equiv correlation/convolution)
- $\blacksquare Hence, v \Rightarrow V \& a \Rightarrow A$
- Then, by the convolution theorem, $v * v \Rightarrow V \times V = A$
 - (*V* is the antenna voltage pattern.)

What is the combined beamshape of an interferometer?

The antenna response, A₁₂, is the FT of the cross-correlation of the 2 aperture illuminations: v₁*v₂ ⇒ A₁₂
Then, by the convolution theorem, v₁*v₂ ⇒ V₁ × V₂ = A₁₂
For v₁ » v₂, V₂ ~ const, so A₁₂ ~ V₁
This results in a broader main beam lobe

EVN element and interferometer beam properties at 18 cm

St_1*St_2	θ_1	θ2	θ ₁₂	Ω_{12}/Ω_1
Ar*Eb	2.9′	7.4′	3.8′	1.74
Ar*Jb1	2.9′	10′	3.9′	1.84
Ar*Sh	2.9′	30′	4.1'	1.98
Eb*Jb1	7.4′	10′	8.4'	1.3
Eb*Sh	7.4′	30′	10.2′	1.9
Jb1*Sh	10'	30′	13.4′	1.8
Mc*Sh	23′	30′	26.0′	1.25

Interesting (?), but so what?

- If you're only concern is what goes on within <1" arc, you're not affected.</p>
- If you want an in-beam reference source, then you might be interested.
- For wide-field mapping, this should certainly interest you!
- (And in any event, it's fundamental.)

Postlude: what is the effect?

Sources off axis will be attenuated in the sky plane (in the u, v –plane, the visibility will be convolved by the FT of the interferometer primary beam).

- This can be different for different baselines.
- Will affect map, but also self-cal.