# IVS Products for Precise Global Reference Frames



#### **Wolfgang Schlüter**

Bundesamt für Kartographie und Geodäsie Fundamentalstation Wettzell

#### **Nancy Vandenberg**

NVI, Inc./ Goddard Space Flight Center

- About IVS
- IVS products and related observing programs
- Operational improvements
- VISION 2010

# IVS - International VLBI Service for Geodesy and Astrometry

#### IVS is a service of

- IAG International Association of Geodesy
- IAU International Astronomical Union
- **FAGS** Federation of Astronomical and Geophysical Data Analysis Services

#### Main tasks of the IVS

- global coordination of VLBI components in order to guarantee the provision of the products for
  - ◆ Celestial Reference Frame (CRF) VLBI is fundamental and unique for CRF

    IAU Resolution, August 2000
  - ◆ Terrestrial Reference Frame (TRF) VLBI contributes strongly to TRF (scale)
  - ◆ Earth Orientation Parameter (EOP's) VLBI provides complete set of EOP, uniquely DUT1

#### Basis for collaboration and contributions

- Call of Participation in 1998
- Proposals for 73 permanent components,
  - from 37 Institutions in 17 countries,
  - ~ 250 Associate Members

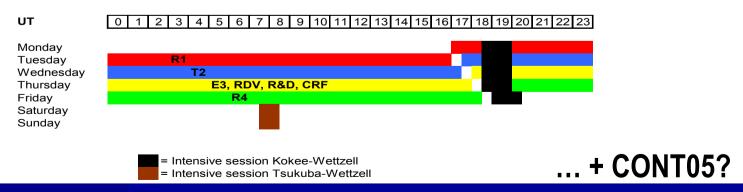
## **Map of the IVS Components**



## **Step to meet Service Requirements**

- When IVS started the demand for continuity in maintaining the reference frames forced to employ the existing observing programs (NEOS, CORE, .... INT)
- 2001 review of products and observing programs
  - ==> Working Group 2
  - ➤ Basis for improving products and evolving observing programs to meet service requirements

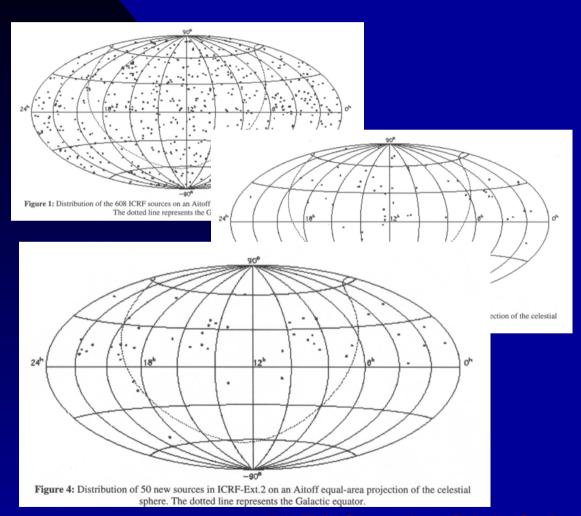
## Review of Products (examples from Working Group 2 Report)


| • | Products polar motion | accuracy latency resolution freq. of sessions | Status 2001<br>x <sub>p</sub> ~100 μas, y <sub>p</sub> ~200 μas<br>1-4 weeks 4 months<br>1 day<br>~3 d/week | <b>Goals(2002-2005)</b> x <sub>p</sub> , y <sub>p</sub> : 50 25 μas 4 - 3 days1day 1 day1h 10min7d/week |
|---|-----------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| • | UT1                   | accuracy<br>latency<br>resolution             | 5 20 μs<br>1 week<br>1 day                                                                                  | 3 2 μs<br>4 - 3 days 1day<br>1 day 10min                                                                |
| • | Δε, Δψ                | accuracy latency resolution freq. of sessions | 100 400 μas<br>1-4 weeks 4 months<br>1 day<br>~3 d/week                                                     | 5025 μas<br>4 - 3days 1 day<br>1 day<br>7 d/week                                                        |
| • | TRF (x,x,z)           | accuracy                                      | 5-20 mm                                                                                                     | 5 2 mm                                                                                                  |
| ٠ | CRF                   | accuracy                                      | 0.25-3 mas                                                                                                  | 0.25 mas (improved distribution)                                                                        |
|   |                       | freq. of solution latency                     | 1 y<br>3-6 months                                                                                           | 1 y<br>3 1 month(s)                                                                                     |
| - |                       |                                               |                                                                                                             |                                                                                                         |

#### Improvements within IVS Observing Program

- Appropriate observing programs started 2002 for
  - Earth Orientation Parameters (EOP): IVS-R1 ... IVS-R4 ..., IVS-INT1/2
    - Two rapid turn-around sessions each week,
    - Comparable xp, yp results.
    - Additional sessions employing S2 and K4 techniques (IVS-E3, IVS-INT2)
  - ♦ Terrestrial Reference Frame (TRF): IVS-T2
    - Monthly TRF sessions with 8 stations
  - Celestial Reference Frame (CRF): RDV and IVS-CRF
    - RDV: Bi-monthly RDV sessions using the VLBA and up to 10 geodetic stations,
      - ◆ USNO: Source structure, NASA: TRF, NRAO: high precise source positions
    - ❖ IVS CRF (8-10 per year): Astrometric observations for new sources
  - CONT, whenever required IVS-CONT02
    - ◆ 14-day continuous sessions to demonstrate the best results that VLBI can offer
  - Monthly R&D sessions: IVS-R&D
    - to investigate instrumental effects, research the network offset problem
      - Geodetic VLBI observations increased by

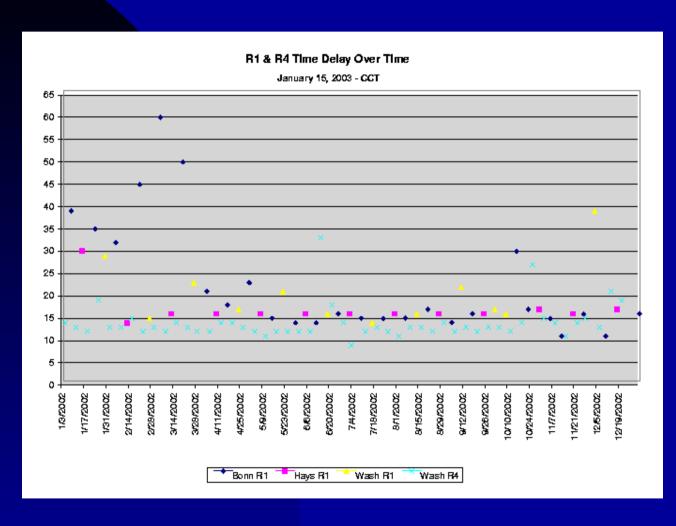
## **2005 Observing Plan Summary**


| Session purpose                      | Session code | #<br>sessions | Typical # stations | Total<br>station<br>days | Average<br>GB per<br>station per<br>day | Mb/s for<br>transfer<br>in 1 day | Total TB<br>per year |
|--------------------------------------|--------------|---------------|--------------------|--------------------------|-----------------------------------------|----------------------------------|----------------------|
| Rapid turnaround EOP (Monday)        | IVS-R1       | 52            | 7.0                | 364                      | 1200                                    | 111                              | 437                  |
| TRF, all stations 3-4 times per year | IVS-T2       | 6             | 16.0               | 96                       | 400                                     | 37                               | 38                   |
| EOP, TRF using S2                    | IVS-E3       | 12            | 6.0                | 72                       | 600                                     | 56                               | 43                   |
| Rapid turnaround EOP (Thursday)      | IVS-R4       | 52            | 7.0                | 364                      | 500                                     | 46                               | 182                  |
| CRF, emphasis on south               | IVS-CRF      | 13            | 3.0                | 39                       | 400                                     | 37                               | 16                   |
| 20-station EOP/TRF/CRF sessions      | RDV          | 6             | 20.0               | 120                      | 1000                                    | 93                               | 120                  |
| R&D Gb/s                             | IVS-R&D      | 10            | 6.0                | 60                       | 3000                                    | 278                              | 180                  |
| Regional - Antarctica                | IVS-OHIG     | 6             | 6.0                | 36                       | 300                                     | 28                               | 11                   |
| Regional - Europe                    | EURO         | 4             | 9.0                | 36                       | 300                                     | 28                               | 11                   |
| Regional - Antarctica                | SYOWA        | 4             | 3.0                | 12                       | 300                                     | 28                               | 4                    |
| Regional - Asia/Pacific              | APSG         | 2             | 6.0                | 12                       | 300                                     | 28                               | 4                    |
|                                      | Totals       | 167           |                    | 1211                     |                                         |                                  | 1045                 |



## IVS sites and cooperating VLBI sites




## **Products for CRF**



#### ICRF

- CRF
  - 212 defining sources
  - 294 Candidate sources
  - 102 other sources
- ICRF-Extension 1
  - Completed 1999
  - Adding 59 Sources
- ◆ ICRF-Extension 2
  - Completed 2002
  - Adding 50 Sources
- IVS as service of IAU contributes to the maintenance of CRF by monitoring Sources
   (Positions, Structures) in close relation to IAU WG on Reference Frames and IERS

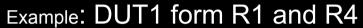
#### Improved delay from observation to product availability



#### 2 time series per week

- IVS R1 (Bo, Ha, Wa)
- IVS R4 (Wash)

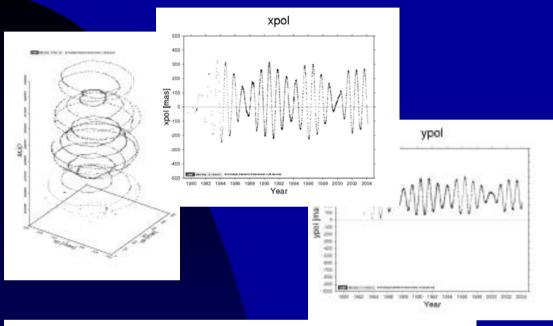
#### Results available


approximately after two weeks

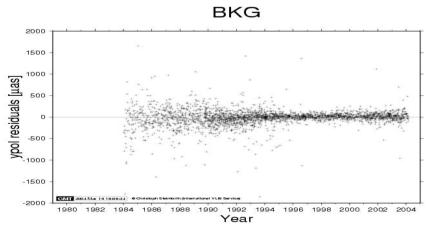
#### Potential for Improvements

- Acceleration of Transportation
- (e-VLBI)
- Correlator processing (employing MK5)

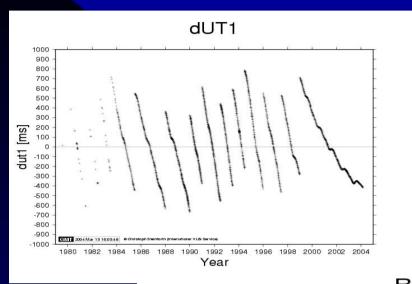
## Combined EOP's are regular IVS Products


**Analysis Coordinator: Axel Notnagel, Univ. Bonn** 

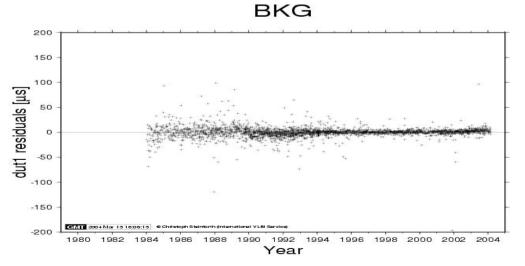




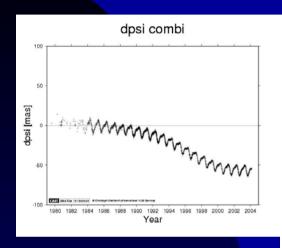

- Complete set of EOP's
  - dψ, dε
  - $\bullet$   $X_p$ ,  $y_p$
  - UT1-UTC
- Combined Solution from 5 (6) Analysis Centers
- 20-30% improved
  - accuracy
  - robustness
  - R1 & R4 since 2002


#### **IVS Combined Product: Polar Motion**



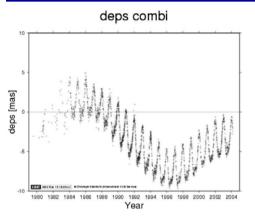

|     | X-Pol [ | µas]  | Y-Pol [µas] |       |  |
|-----|---------|-------|-------------|-------|--|
| AC  | X-Bias  | WRMS  | Y-Bias      | WRMS  |  |
| AUS | -13,5   | 196,0 | 1,1         | 217,4 |  |
| BKG | -2,1    | 68,4  | 6,3         | 56,1  |  |
| GSF | 2,0     | 52,1  | -1,9        | 44,2  |  |
| IAA | 0,9     | 87,5  | -2,3        | 83,1  |  |
| USN | 0,8     | 70,9  | -3,4        | 58,7  |  |

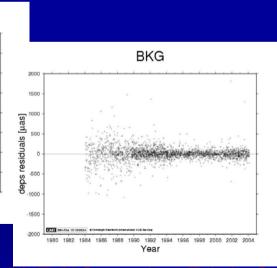



#### **IVS Combined Product: UT1-UTC**



|     | UT1-UTC [µs] |      |  |  |  |  |
|-----|--------------|------|--|--|--|--|
| AC  | X-Bias       | WRMS |  |  |  |  |
| AUS | O,9          | 10,8 |  |  |  |  |
| BKG | 0,3          | 2,8  |  |  |  |  |
| GSF | 0,1          | 2,1  |  |  |  |  |
| IAA | -0,4         | 2,4  |  |  |  |  |
| USN | -0,2         | 2,4  |  |  |  |  |

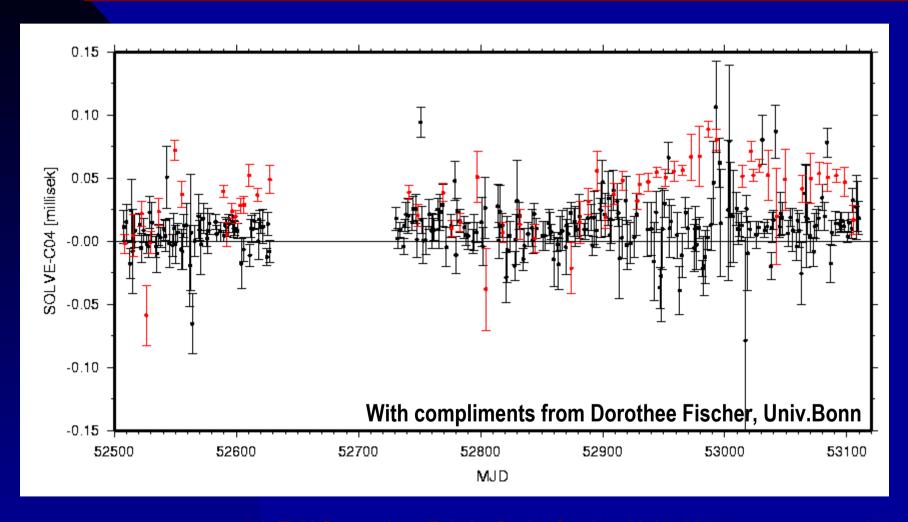




## **IVS Combined Product: dφ and dε**

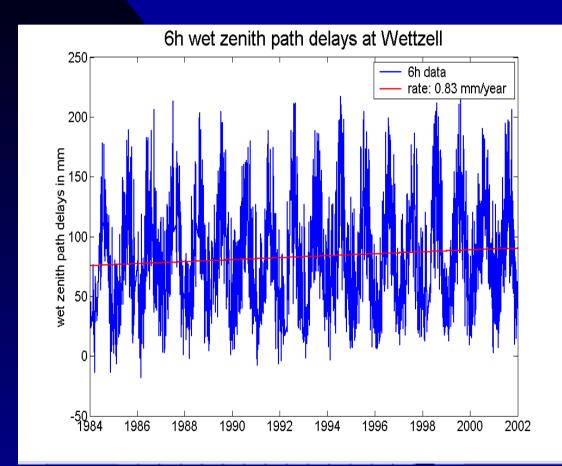


BKG

Year



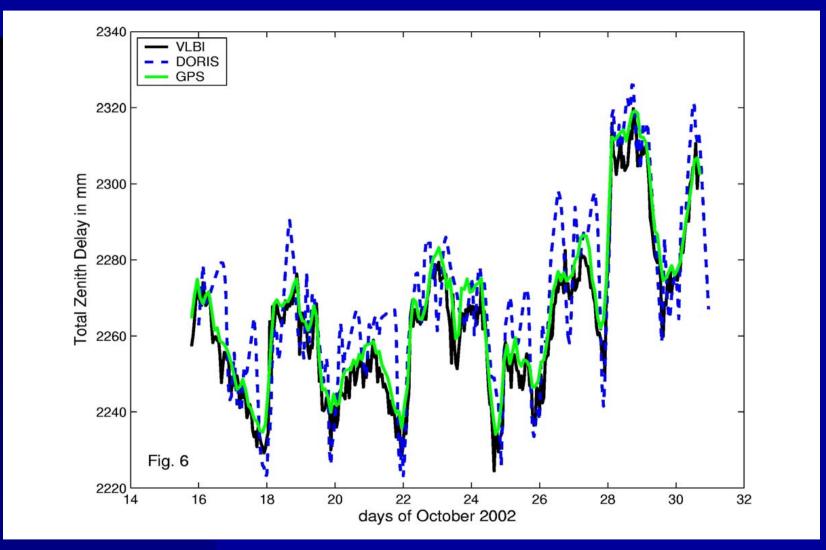




|     | dpsi [µ | as]   | deps [µas] |      |  |
|-----|---------|-------|------------|------|--|
| AC  | X-Bias  | WRMS  | Y-Bias     | WRMS |  |
| AUS | 7,7     | 188,1 | -18,9      | 89,4 |  |
| BKG | -23,9   | 209,2 | 0,4        | 80,5 |  |
| GSF | -53,1   | 196,4 | -10,1      | 76,6 |  |
| IAA | 22,9    | 140,8 | 14,6       | 59,7 |  |
| USN | -8,0    | 219,7 | 6,8        | 82,2 |  |

#### **UT1-UTC from INTENSIVES with reference to CO4**

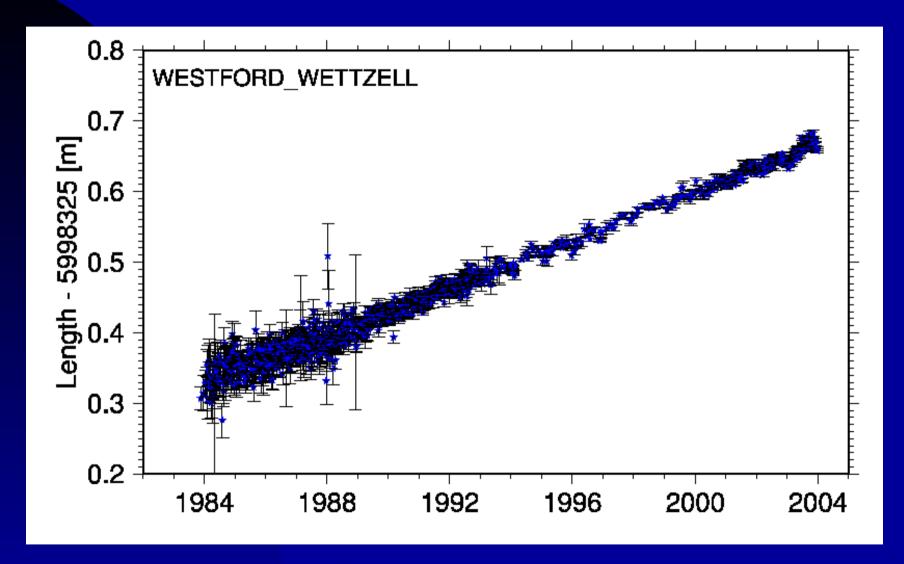
MK4: Wettzell - Kokee Park (black) and K4: Wettzell - Tsukuba (red)




# Tropospheric Parameter WZD as IVS product



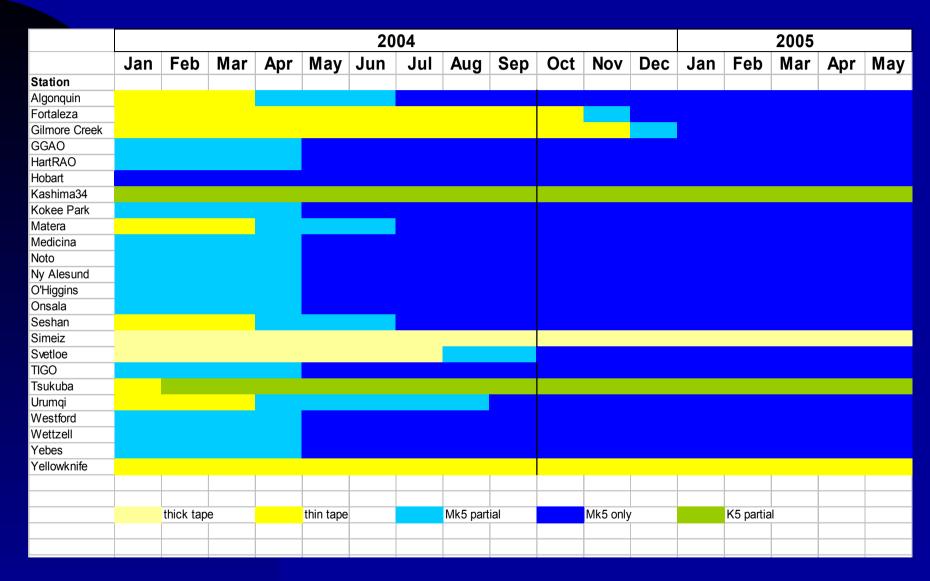
With compliments from H.Schuh et.al., TU-Vienna


- Wet Zenith Delay
  - Regular for each R1 or R4
  - Hourly resolution
- Solution of 5 Analysis Centers
- Combined by TU-Vienna
- Combined IVS product officially accepted at the 9<sup>th</sup> DB-meeting
- 2-3mm precission comparable to GPS (or better?)

#### Total Zenith Delay derived from CONT02 at Gilcreek



With compliments from H.Schuh et.al., TU-Vienna


### **IVS Pilot Project: Time Series of Baseline Lengths**



## **Operational Improvements**

- Digital Recorder
  - ♦ MK5A ... MK5b
  - ♦ K5
- VSI
- e-VLBI
  - ◆ near real time
  - ◆ real time

## Mk 5/K5 Usage Plan



# Employing Internet for Datatransmission "e-VLBI"

#### Required time for the transfer

(max. throughput 60%)

| Co       | nnection   | R1    | R4    | INT   | costs / a<br>(WiN) |
|----------|------------|-------|-------|-------|--------------------|
| <b>*</b> | 64 kbit/s  | -     | -     | 100 d |                    |
| <b>*</b> | 2 Mbit/s   | 93 d  | 69 d  | 3 d   |                    |
| <b>*</b> | 34 Mbit/s  | 6 d   | 4 d   | 5 h   | ~ 50k€             |
| *        | 155 Mbit/s | 1,2 d | 1 d   | 1 h   | ~180k€             |
|          | 622 Mbit/s | 7 h   | 5 h   | 15 m  | ~450k€             |
| <b>*</b> | 2,4 Gbit/s | 1,9 h | 1,3 h | 4 m   |                    |

#### Connectivity of geodetic-VLBI components

- Haystack, USA-Ma (2.5 Gbps)
- Kashima, Japan (1 Gbps; 2 x 1 Gbps soon)
- Tsukuba, Japan (1 Gbps)
- GGAO, USA-Md (1 Gbps)
- Onsala, Sweden (1 Gbps)
- Westford, USA-Ma (1 Gbps)
- Wettzell, Germany (34 Mbps)
- Kokee Park, USA-Ha (nominally ~30 Mbps, but problems)

# Vision Paper 2010 focus on "next generation" geodetic VLBI

#### Working Group WG 3 established at the 10 DB-Meeting:

- Needs for a vision paper:
  - Increasing requirements e.g from GGOS/IAG
  - RFI, frequency bands?
  - Aging antennas
  - Long term planning
- Goals:
  - Unattended observing, more regular
  - Improved global coverage
  - Electronic data transfer
  - Near real time correlation and product provision
  - Report end 2004
- Close collaboration with Radio-Astronomers (SKA)

#### **WG3: VISION 2010**

- Chaired by Alan Whitney and Arthur Niell
- Subgroups
  - Observing Strategies (Bill Petrachenko)
    - Frequency Bands, RFI
    - Fieldsystem and Scheduling
    - Source strength /structure /distribution
    - Antenna network configuration and observing strategies
  - ◆ RF/IF, Frequency and Time (Hayo Hase)
    - Antennas and Feeds
    - ♦ RF/IF and Calibration
    - ♦ Time and Frequency Standards
  - Backend Systems (Gino Tuccari)
    - Backends, digital filtering and BBC's
  - Data acquisition and transport (Alan Whitney)
  - Correlation and fringe finding (Yasuhiro Koyama)
  - Data analysis (Harald Schuh)
  - Data archiving and management (Chopo Ma)

## Thank you!