A suspected Dark Lens revealed with the e-EVN

Sándor Frey^c, FŐMI SGO Zsolt Paragi^{co}, JIVE Bob Campbell, JIVE Attila Moór, Konkoly Obs.

 ζ also affiliated with MTA Research Group for Physical Geodesy and Geodynamics, Budapest O presenter

CDM halos: how to make them visible?

- Galaxies form within massive dark matter halos (CDM)
- Are there halos without associated galaxies? A substantial fraction of the halos may be empty (e.g. Nagamine et al. 2001, MNRAS 327, L10)
- These condensations of CDM may reveal themselves by acting as a gravitational lens (*Li & Oostriker 2002, ApJ 566, 652; Wyite, Turner & Spergel 2001, ApJ 555, 504*)

What are the properties of Dark Lenses?

- Properties of DLs were investigated by David Rusin (2002, ApJ 572, 705 the introduction follows this paper)
- Study motivated by a number of quasar pairs observed, with no apparent lensing galaxy (e.g. Hawkins 1997, A&A 328, L25; Mortlock, Webster & Francis 1999)
- O²R pairs (Kochanek, Falco & Muñoz 1999, ApJ 510, 590) and those with different spectral line widths are excluded
- Remaining ~10 systems are likely physical pairs based on statistical considerations (Kochanek et al. 1999)
- Additional criteria needed to investigate them case by case

Dark Lens properties (cont.)

- CDM inner mass profiles predicted to be shallow, $\rho \propto r^{-\alpha}$: $\alpha = 1$ (NWF, Navarro et al. 1997, ApJ 490, 493)
 - $\alpha = 1.5$ (Moore et al. 1999) ; cf. isothermal profile $\alpha = 2$
- Cooling may modify the primordial profile, compression...
- To produce primordial DL 1"< $\Delta\theta$ <10" images one requires $M_{\rm vir}$ >10^{13.5} M_{\odot} (e.g. Li & Oostriker 2002, Apj 566, 652)
- Rusin (2002) investigated magnification ratios for 2-3 image configurations (3-central image): $r_{ij} \equiv |\mu_i / \mu_j|$

NFW: ~50% r_{12} <2, almost all <5; cf. isothermal only 11% r_{12} <2

Moore: sharper profile, but still tends to produce small r₁₂ and relatively bright third image, compared to normal lens galaxies

A Dark Lens candidate

- Russell et al. (2008, ApJS 179, 306) Optical arc discovered in HST image -without apparent lensing Galaxy
- Ryan et al. (2008, ApJ 688, 43) Nearby FIRST radio source may belong to the lensing object, not seen in the optical image (but note 1σ error in registration of positions)
- If the lensing scenario is correct: is the lens a heavily obscured galaxy, or an object dominated by dark matter?

HST WFPC2 image

Radio and optical source properties

FIRST J1218+2953 33 mJy, deconvolved size <1 arcsec
 129 mJy @330 MHz (WENSS²; *de Bruyn et al. 1998*)
 151 mJy @151 MHz (*Hales et al. 2007, MNRAS 382, 1639*)
 284 mJy @ 74 MHz (*Cohen et al. 2004, ApJS 150, 417*) => sp. ind. α=-0.7

 Ryan et al. redshift estimates: z>0.8 (no optical gx); z<1.5 (radio brightness)

- SAO Wide-field IR camera: $J_{\text{lim}} = 22.0 \text{ mag}, H_{\text{lim}} = 20.7 \text{ mag}$
- Optical arc MMT spectroscopy: Weak spectral break ~λ4300Å Balmer/4000 => z~0.13 Lyman break => z~2.5; more likely solution

Ryan et al. Lens Modeling

- If z~0.13, sources unrelated; if z~2.5, FIRST source may act as lens
- Long arc requires elliptical mass distribution: assumed isothermal profile (thus, normal gx, not DM); lensmodel (Keeton 2001)
- Optical knot must be foreground object, or two sources are lensed

- Arc is a single distorted image in succesful models; variability along the arc must reflect intrinsic brightness varations
- Faint secondary image predicted, close to the "hot pixel"

Implied masses

- Within the Einstein radius of 1.3 arcsec, the enclosed mass is ${\sim}10^{12.5{\pm}0.5}~M_{\odot}$
- From SWIRC upper limits the dynamical mass to light ratio is $>30 M_{\odot}L_{\odot}^{-1}$
- Assuming modest absorption (A_v=1.0 mag) it is still >10 M_oL_o ⁻¹ for an early type galaxy –dominated by DM
 Alternatively, if there is an AGN, it can be a dusty, massive,
 - extincted galaxy with $M_{\star} < 10^{10}$ M_{\odot} and dynamical mass to light ratio >100 M_{\odot}L_{\odot}⁻¹

The hunt for an AGN (S. Frey et al.)

- Short e-EVN request: is FIRST J1218+2953 compact on milliarcsecond (mas) scales?
- 2009 Jan. 23, 1.6 GHz@512Mbps,
 2-bit sampling, dual-pol for two hours with the array of Jb2, Cm+Kn from Merlin, Mc, On, Tr, Wb (Ef could not join)
- Phase-referenced to J1217+3007, 0.28 deg. away, in 1:30 – 3:30 min. cycles on calibrator and target

From just 2 hours of e-EVN data...

 Symmetric structure, spanning ~500 mas
 Several kpc at z~1

Is this a huge CSO, or a lensed image???
Note radio source position may be consistent with the lens model centre

Follow-up observations

- Proposal for 2009 Feb. 1 deadline: full track e-EVN observations at 5 and 1.6 GHz
- Needs spectral index information, higher resolution, and better sensitivity
- 5 GHz on 2009 Mar. 24-25, 1024 Mbps @Ef, On, Tr, Wb, 512 Mbps @Jb2, Mc, 128 Mbps from Cm&Kn, 8 hours
- 1.6 GHz on 2009 Apr. 21-22, 512 Mbps@Ef, On, Tr, Wb, Jb1, 256 Mbps@Ar (daytime limitation), 128 Mbps Cm&Da, 8 hours
- Same 1:30 3:30 min. p-ref cycle as before

2009 Mar. 24-25, e-EVN, 5 GHz

Complex structure, hard to interpret
Does not look like CSO or core-jet system
WSRT resolution not enough to resolve the location of the arc

2009 Apr. 21-22, e-EVN, 1.6 GHz

-500

J121839, at 1.658 GHz 2009 Apr 21 8 Brightest part at GHz 2009 Apr 21 full resolution (mds) Relative Declination °°°2 0 100 Q 100 -100 n. Right Ascension (mas) Decli Relative Q FIRST J1218+2953 500 1500

Right Ascension

(mas)

Structure is resolved, but brightest features visible at full resolution, including Arecibo Components have steep spectra, and structure indicates CSS/ MSO –type morphology on the tapered map Missing some extended flux, but most of the WSRT flux density is recovered with VLBI within 1 arcsecond

Summary of results

- FIRST J1218+2953 has a very complex strucuture on 10-1000 mas scales
- Being a lensed image is unlikely, because VLBI recovered flux is consistent with what is measured on WSRT scales – radio emission from the arc cannot be significant, in contrast to lens-scenario expectations
- Looks like definite evidence for AGN activity, which must mean that the radio source HAS TO BE in the lens model centre
- If this is indeed a gravitational lens at z~1, the galaxy must be extremely dark, totally extincted (but what is the "hot pixel?")
- Deeper IR limits are required, or redshift determination for the radio source (very sensitive UHF HI observation – SKA?)

Conclusions

- The very sensitive short spacings of the (e-)EVN are extremely valuable for studying high redshift, MSO-like systems
- WSRT synthesis data together with VLBI provide additional unique information on the sources
- Short turnaround time and more regular sessions with the e-EVN helps PIs considerably to produce VLBI results on timescales comparable to other instruments