

eVLBI spectral line applications

Andreas Brunthaler

Max-Planck-Institut für Radioastronomie

Science demo

- first e-VLBI science experiment: 22 September 2004
- OH maser emision in supergiant IRC+10420

What is eVLBI?

Theory

rapid results

highly reliable

highly flexible

Practice

Yes! (except TECOR files)

Yes!

Not yet!

- only one session per month
- only one frequency per session
- limited telescopes
- no dynamic scheduling
- limited to one correlator pass

- > 500 6.7 GHz methanol masers known (Pestalozzi et al. 2005
- many more with Parkes methanol multi-beam survey
- only small fraction have accurate (interferometer) positions
 - difficult to cross correlate with other surveys
- even smaller fraction have been imaged with VLBI

- Bartkiewicz et al. (2009) imaged 31 methanol masers with the EVN
- a large variety of morphologies
- -3 (9.5%) masers: simple

- Bartkiewicz et al. (2009) imaged 31 methanol masers with the EVN
- a large variety of morphologies
- -3 (9.5%) masers: simple
- 1 (3%) masers: pair

- Bartkiewicz et al. (2009) imaged 31 methanol masers with the EVN
- a large variety of morphologies
- -3 (9.5%) masers: simple
- 1 (3%) masers: pair
- 2 (6.5%) masers: triple

- Bartkiewicz et al. (2009) imaged 31 methanol masers with the EVN
- a large variety of morphologies
- -3 (9.5%) masers: simple
- 1 (3%) masers: pair
- 2 (6.5%) masers: triple
- 3 (9.5%) masers: *linear*

- Bartkiewicz et al. (2009) imaged 31 methanol masers with the EVN
- a large variety of morphologies
- -3 (9.5%) masers: simple
- 1 (3%) masers: pair
- 2 (6.5%) masers: triple
- 3 (9.5%) masers: *linear*
- 3 (9.5%) masers: arc-like

- Bartkiewicz et al. (2009) imaged 31 methanol masers with the EVN
- a large variety of morphologies
- -3 (9.5%) masers: simple
- 1 (3%) masers: *pair*
- 2 (6.5%) masers: triple
- 3 (9.5%) masers: *linear*
- 3 (9.5%) masers: arc-like
- 7 (23%) masers: complex

- Bartkiewicz et al. (2009) imaged 31 methanol masers with the EVN
- a large variety of morphologies
- -3 (9.5%) masers: simple
- 1 (3%) masers: *pair*
- 2 (6.5%) masers: triple
- 3 (9.5%) masers: *linear*
- 3 (9.5%) masers: arc-like
- 7 (23%) masers: complex
- 12 (39%) masers: elliptical

- Bartkiewicz et al. (2009) imaged 31 methanol masers with the EVN
- a large variety of morphologies
- only the tip of the iceberg
- similar for OH and water masers
- VLBI maps of most masers could be done in a reasonable time
- stronger masers need only small dishes
- can be used for follow up parallax measurements

Requirements:

resolution (baselines)

continuum sensitivity (data rates)

line sensitivity

correlator constraints

scheduling constraints

medium (more distant sources are ok! scatter broadened)

low (no very accurate astrometry needed)

medium to high ok!

1 IF with high spectral resolution ok!

none for OH and methanol, ok! dynamic scheduling for water No!

Trigonometric Parallax

- ESA Cornerstone Mission: GAIA
- Launch: Dez, 2011, Mission ends: 2020
- 10⁹ stars with up to ~20 μas
- But: large parts of Milky Way obscured by dust (optical)
- Radio waves not obscured by dust
- VLBI can reach accuracies of 10 μas

Observing strategy important

• less accurate (even if accuracy of individual measurements is identical)

Observing strategy important

- less accurate (even if accuracy of individual measurements is identical)
- correlation between parallax and proper motion

Observing strategy important

- optimal sampling important
- several nearby calibrators
 - astrometric errors scale with angular separation
 - closer calibrators are usually weaker (high sensitivity needed)
 - calibrators can show ,motions' of ~ 1 mas/yr at lower frequencies
 - in-beam calibrators optimal
- tropospheric calibration reasonably well with GPS or *geodetic blocks*
- ionosphere more problematic (for low frequencies)
 - increasing solar activity

OH Maser Astrometry

- Distances to OH maser AGB stars
- calibrate P-L relation for Mira stars

IIIas

(Vlemmings & van Langevelde 2007)

OH Maser Astrometry

- Distances to OH maser AGB stars
- calibrate P-L relation for Mira stars
- ionosphere a big problem => need calibrators as close as possible
- in-beam calibrators optimal => large FoV, high sensitivity
 - small dishes, high data rates
- interstellar scattering => some masers are resolved on longer baselines
- link between eEVN and eMERLIN

Structure of the Milky Way

Structure of the Milky Way still under debate!

- Spiral arms: Number, Positions
- Rotation speed $\Theta_0 = 170 270 \text{ km/s}$
- Distance Sun Sgr A*
 R₀ ~ 8.4 kpc
- IAU recommended values
 Θ_o = 220 km/s
 R_o = 8.5 kpc

Solution: Distances and proper motions on global scale

(R. Hurt, NASA)

Measuring the Milky Way

Example: W3(OH) in Perseus spiral arm

Kinematic distance: ~ 4.3 kpc

- H₂O (Hachisuka, Brunthaler et al. 2006):

$$\pi$$
 = 489 ± 17 μ as (3.5%)
D = 2.04 ± 0.07 kpc

- CH₃OH (Xu et al. 2006):

$$\pi = 512 \pm 10 \mu as (1.9\%)$$
D = 1.95 ± 0.04 kpc

 Motion of ~20 km/s relative to circular orbit

Current Status:

Source	Distance	U [km/c]	V [km/c]	W [km/c]	Reference
W3(OH)	[kpc] 1.95 ± 0.04	[km/s] 17 ± 1	[km/s] -14 ± 1	[km/s] -0.8 ± 0.5	Xu et al. 2006
W3(3(1)	2.04 ± 0.07	17 ± 1	17 ± 1	0.0 ± 0.0	Hachisuka et al. 2006
Orion	0.414 ± 0.007	-8 ± 1	-11 ± 2	3 ± 2	Menten et al. 2007
G23.657-00.127	3.19 ± 0.4	42 ± 6	2 ± 3	4 ± 1	Bartkiewicz et al. 2008
VY CMa	1.14 ± 0.09	1 ± 3	-16 ± 2	-6 ± 2	Choi et al. 2008
S252	2.10 ± 0.027	-4 ± 3	-16 ± 1	-2 ± 1	Reid et al. 2009
G232.6+1.0	1.68 ± 0.1	-4 ± 3	-10 ± 3	0 ± 2	Reid et al. 2009
Сер А	0.70 ± 0.04	5 ± 3	-12 ± 3	-5 ± 2	Moscadelli et al. 2009
NGC7538	2.65 ± 0.12	25 ± 2	-30 ± 3	-10 ± 1	Moscadelli et al. 2009
G59.7+0.1	2.16 ± 0.1	7 ± 1	-10 ± 3	-4 ± 1	Xu et al. 2009
W51 IRS2	5.1 +2.9 -1.4	21 ± 15	-5 ± 10	-3 ± 5	Xu et al. 2009
G35.20-0.74	2.19 ± 0.22	0 ± 2	-13 ± 3	-8 ± 2	Zhang et al. 2009
G35.20-1.74	3.27 ± 0.5	1 ± 7	-16 ± 5	-9 ± 3	Zhang et al. 2009
G23.01-0.41	4.59 ± 0.35	37 ± 7	-29 ± 5	-1 ± 3	Brunthaler et al. 2009
G23.44-0.18	5.88 ± 1.4	22 ± 27	-26 ± 8	2 ± 3	Brunthaler et al. 2009
WB89-437	6.0 ± 0.2	23 ± 3	-4 ± 6	1 ± 1	Hachisuka et al. 2009
Sun	0	10.0 ± 0.4	5.2 ± 0.6	7.2 ± 0.4	Dehnen & Binney 1998

(almost) All sources rotate slower than Milky Way!

Systematic Motions

- (most) sources rotate slower than Milky Way, independent of rotation model
- (most) sources are closer (few 50 %) than their kimenatic distance!
- Fitted different Galactic rotation models to 6d data

Table 4. Least-squares Fitting Results

Fit	$R_0 \ m (kpc)$	$\Theta_0 \ ({ m km \ s^{-1}})$	$(\mathrm{km}\ \mathrm{s}^{-1}\ \mathrm{kpc}^{-1})$	$\overline{U_s}$ (km s ⁻¹)	$\overline{V_s} \ ({ m km \ s^{-1}})$	$\overline{W_s}$ (km s ⁻¹)	χ^2	DF	$\Theta_0/R_0 \ ({ m km \ s^{-1} \ kpc^{-1}})$	
1	$8.24{\pm}0.55$	265 ± 26	0.0	0.0	0.0	0.0	263.3	70	$32.4{\pm}1.3$	-
2	8.50 ± 0.44	264 ± 19	0.0	$3.9{\pm}2.5$	-15.9 ± 2.1	3.1 ± 2.5	111.5	67	31.1 ± 1.1	
3	8.40 ± 0.36	$254 {\pm} 16$	0.0	2.3 ± 2.1	-14.7 ± 1.8	$3.0 {\pm} 2.2$	66.7	59	30.3 ± 0.9	
4	$9.04{\pm}0.44$	$287 {\pm} 19$	$2.3 {\pm} 0.9$	$1.9{\pm}2.0$	-15.5 ± 1.7	3.0 ± 2.1	59.0	58	$31.1 {\pm} 0.9$	
5	8.73 ± 0.37	$272{\pm}15$	Clemens-10	$1.7 {\pm} 1.9$	-12.2 ± 1.7	$3.1 {\pm} 1.9$	52.9	59	$31.0 {\pm} 0.8$	
6	$7.88 {\pm} 0.30$	$230{\pm}12$	Clemens-8.5	$2.7{\pm}2.2$	$-12.4{\pm}1.9$	$3.1 {\pm} 2.3$	71.2	59	$29.6{\pm}1.0$	
7	8.79 ± 0.33	$275{\pm}13$	Brand-Blitz	$1.9 {\pm} 2.0$	-18.9 ± 1.8	$3.0 {\pm} 2.1$	59.0	59	$31.0 {\pm} 0.9$	

Note. — Fits 1 & 2 used all 18 sources in Table 1 and have high χ^2 values, owing to two outliers: NGC 7538 and G 23.6-0.1. Fit 3 excludes the two outliers and provides our basic result, under the assumption of a flat rotation curve. Fits 4 - 7 explore the effects of non-flat rotation curves. "DF" is the degrees of freedom for the fit (i.e. number of data equations minus number of parameters). $(\overline{U_s}, \overline{V_s}, \overline{W_s})$ are average peculiar motions common to all sources (see Table 7 and Fig. 7), assuming the Hipparcos solar motion of Dehnen & Binney (1998) (see discussion in §3.1). All Θ_0/R_0 estimates were obtained by holding $R_0 = 8.50$ kpc and solving for Θ_0 . "Clemens-10" and "Clemens-8.5" refer to the Clemens (1985) rotation curves for $(R_0[\text{kpc}],\Theta_0[\text{km s}^{-1}]) = (10,250)$ and

Galactic Rotation Model Fits

	Maser	IAU	Independent Measurements
	Parallaxes		
R ₀ [kpc]	8.4 ± 0.6	8.5	8.4 ± 0.4 (Ghez et al. 2008)
			8.33 ± 0.35 (Gillessen et al. 2009)
Θ_0 [km/s]	254 ± 16	220	
Θ_0/R_0 [km/s/kpc]	30.3 ± 0.9	25.9	29.45 ± 0.15 (Reid & Brunthaler 2004)

Average peculiar motions:

 U_s = 2.3 \pm 2.1 km/s, V_s = -14.7 \pm 1.8 km/s, W_s = 3.0 \pm 2.2 km/s

Galactic Rotation Model Fits

	Maser	IAU	Independent Measurements
	Parallaxes		
R ₀ [kpc]	8.4 ± 0.6	8.5	8.4 ± 0.4 (Ghez et al. 2008)
			8.33 ± 0.35 (Gillessen et al. 2009)
Θ_0 [km/s]	254 ± 16	220	
Θ_0/R_0 [km/s/kpc]	30.3 ± 0.9	25.9	29.45 ± 0.15 (Reid & Brunthaler 2004)

- Project to measure parallaxes of 6.7 Methanol masers with the EVN
- 5 epochs between June 2006 and March 2008
- 8 maser sources with 2 background quasars each in 24 hours
- ON1, L1287, L1206, NGC 281-W, Mon R2, S252, S255, S269
- only 25 min on each quasar and 75 min on each maser
- Telescopes: EF, TR, MC, NT, ON, WB(1), JB, CM, HH, EVLA(1)

 \bullet 4 sources with accuracies better than 40 μ as

 \bullet 4 sources with accuracies better than 40 μ as

- \bullet 4 sources with accuracies better than 40 μ as
- 1 source with accuracy of \sim 150 μ as
- 3 sources with no good parallax

Much more is out there...

Much more is out there...

close to optimal sampling possible for some sources with current EVN sessions

Much more is out there...

- close to optimal sampling possible for some sources with current EVN sessions
- eVLBI is needed for most sources
- a large parallax survey has many different science products:
 - accurate distances to most high mass star forming regions in the Galaxy
 - 3d space motions of most high mass star forming regions
 - improved rotation model of the Milky Way: R_0 and Θ_0 to 1%
 - location and number of spiral arms
 - internal kinematics of most high mass star forming regions
- in particular the southern hemisphere is unexplored => eVLBI in Australia

eVLBI Astrometry

Requirements:

- resolution (baselines)
- continuum sensitivity (data rates)
- line sensitivity
- correlator constraints
- scheduling constraints

high (more distant sources are scatter broadened) Not yet!

high (calibrators as close as possible) ok!

high ok!

1 IF with high spectral resolution all IFs with low resolution

measuring the peak of the parallax ok! dynamic scheduling for water No!

Conclusions

Great spectral line science possible with eVLBI

- more telescopes needed
 - e.g. long baselines to Korea, China, and Japan
 - what about the gap in between?
 - also shorter baseslines (for highly resolved sources): eEVN + eMERLIN?
- high data rates needed (even for spectral lines)
- new correlator needed
 - high spectral resolution and large bandwidth in one correlator pass
- more flexible scheduling
 - more time
 - more frequencies
 - dynamical scheduling

The Milky Way and Andromeda

- Rotation curves of both Galaxies are now similar
- This implies very similar masses

OH Maser Astrometry

