

Steps to Define a Common Application Transport Header

Richard Hughes-Jones

DANTE Delivery of Advanced Network Technology to Europe

8th International eVLBI Workshop, Madrid, 22-26 June 2009

Requirements

- Must be able to determine the length of a message.
- Must be able to discover missing, out of order, or duplicated data (messages).
- Should be independent of the physics headers (VDIF)
- Should be no interaction with the data (e.g. bit stuffing).
- Should not exclude different lower level network transport protocols or mechanisms.

Network Transport Protocols

Raw Ethernet

Frame Application data FCS header

UDP/IP

Frame IP header UDP Application data FCS header

TCP/IP

Frame IP header TCP Application data FCS header

Private Hardware Framing

Frame Application data FCS

header Our Context

Frame IP UDP ATH VDIF Application FCS header header

Raw Ethernet

Frame	Application data	FCS
header		

- Raw Ethernet frames provide best effort delivery over the Link Layer.
- It is unreliable:
 - Packet may be lost
 - Duplicated
 - Out of order
- Raw Ethernet does give the application the length of the message delivered (which is the frame).

UDP/IP

Frame	IP header	UDP	Application data	FCS
header		header		

- UDP is a connection less service over IP
- Provides best effort delivery, but it is unreliable:
 - Packet may be lost
 - Duplicated
 - Out of order
- UDP does give the application the length of the message delivered (which is the packet)

TCP/IP

Frame	IP header	TCP	Application data	FCS
header		header		

- Connection orientated service over IP
- Reliable end-to-end Byte Stream delivered over unreliable network
- TCP provides
 - Data buffering
 - Flow control
 - Error detection & handling
 - Limits network congestion

- TCP takes care of:
 - Lost packets
 - Duplicated packets
 - Out of order packets

 But TCP does not give the application the length of the message delivered (TCP deals with byte streams).

Private Hardware Framing

Frame	Application data	FCS
header		

- I assume it IS framed
 - E-Merlin 30 Gig links are (ALMA160 bits, sync, sequence no. & checksum)
 - Chip-chip comms. may not be (but PCI-e is).
 - Widar Station Board appears to have CRCs interleaved/in parallel with data.
- It is most probably a bit unreliable:
 - Packet may be lost / corrupted
 - Duplicated
 - Out of order
- Framing does give the application the length of the message delivered (ie the frame).

Requirements Matrix

Requirement	Provide length of a message	Detect lost / out of order / duplicated
Protocol Raw Ethernet	Done by layer 2 framing	Need a frame sequence number.
UDP/IP	Done by layer 2 framing and IP header	Need a packet sequence number.
TCP/IP	Need a byte count	Done by transport protocol
Private Hardware Framing	Done by framing	Need a frame sequence number.

Proposal for the ATH

- The ATH will be placed on the network in littleendian (Intel x86) byte order
 - Most of our systems have PC / disk based influence
 - Compatible with the VDIFSpecification
- UDP, Raw Ethernet, Private Framing

8192 bytes 8 Gig ~1 10¹⁰/day

- A 63 bit packet or frame sequence number bits $\{0,62\}$.
- Start from 0 for each new data flow.
- Set bit 63 to 1 to denote a non-data packet.
- TCP
 - A 31 bit number giving the message length in bytes bits {0,30}
 - Set bit 61 to 1 to denote a non-data message.
- Tested using ATH&VDIF over UDP/IP with eMerlinIN FPGA and PC code.

Open Questions

- Should there be 1 ATH version with both length & sequence number?
 - Seems a bit of a duplication
 - But I don't like 2 versions
 - They don't need to interwork anyway
- Have we got the bit-length correct?
- Do we define non-data packets
 - e.g. the data ACK
 - Controls
- ???

ANY QUESTIONS?