e-VLBI with the SFXC software correlator

Mark Kettenis, Aard Keimpema, Des Small, Mike Sipior, JIVE Damien Marchal, University of Amsterdam

×

UNIVERSITY OF AMSTERDAM

e-VLBI with the SFXC software correlator

History

C++ implementation of the SFXC correlator used for the Huygens probe tracking.

Super FX Correlator algorithm developed by Sergei Pogrebenko.

- FX correlator
- Narrow-band, high spectral resolution
- Fractional bit-shift before fringe rotation
- All baselines calculated on a single "node"
- Largely unoptimized
- Correlator core only

Design Decisions

- Parallelisation in both subbands and time.
- All baselines for a single subband processed on a single cluser node.
- Further course grained parallelisation (in time only) to distribute over multiple clusters.

Current State

- VEX-driven, with small JSON-based control file specifying correlation parameters.
- Modular: input, correlation and output nodes.
- Parallelized using MPI; distributes subbands and time slices.
- Scales from SMP machines to largish clusters.
- Integrated delay model based on CALC 10.
- All subbands processed, both LSB and USB, cross-correlations.
- Takes Mark4/VLBA (Mark5A) and Mark5B input data.
- Output data can be converted into aips++/CASA MeasurementSet
- Supports both 1-bit and 2-bit samples (and combinations)
- MeasurementSet \rightarrow FITS IDI using existing tools
- Huge performance increase over the last year!

Validation

• Comparison with the Mk4 Hardware Correlator & DiFX

First Image

Clean I map. Array: EVN

Clean I map. Array: EVN

FTP Fringe Tests

- SFXC used for EVN operation since May 2007
- Interactive web page
- Many changes based on station feedback

File Edit View History Bookmarks Tools Help												
🔶 🇼 🝷 📚 🛞 🚹 🔣 http:												🗧 🗖 Google 🔍
aMost Visited▼ 🏘 Getting Started 🔊 Latest Headlines▼												
Vex file Integration time: 4s Start of the integration: 2009y168d14h28m56s0ms												
N09SX1	Au	to c	orre	elat	ions		Cross correlations					
	Ef Kn	n Me	c On	Sh	UrW	b Km-Ef	Mc-Ef	On-Ef	Sh-Ef	Ur-Ef	Wb-Ef	
2248.99MHz, USB, Rcp-Rcp	<u>2</u> <u>5</u>	2	2	5	<u>2</u> <u>5</u>	86.33 A P	23.74 A F	47.27 <u>A</u> P	43.75 A P	80.97 A P	<u>4.319</u> <u>A</u> <u>P</u>	
2264.99MHz, USB, Rcp-Rcp	<u>4</u> <u>6</u>	<u>4</u>	<u>4</u>	<u>6</u>	<u>4</u> <u>6</u>	62.97 A F	85.58 <u>A</u> P	<u>39.44</u> <u>A</u> <u>P</u> offset: -1	33.44 A P	70.96 A P	4.867 A P	0.014 (st05,rcp)-(st00,rcp) ch6 usb
2280.99MHz, USB, Rcp-Rcp	<u>6</u> 7	<u>6</u>	<u>6</u>	7	<u>6</u> 7	74.12 A F	0 102.9 A P	49.35 <u>A</u> P	$\frac{44.2}{\text{offset:}} \frac{A}{-1} \frac{P}{P}$	75.16 A P	3.632 A P	0.01
2296.99MHz, USB, Rcp-Rcp	<u>8</u> 8	<u>8</u>	<u>8</u>	<u>8</u>	<u>8</u> 8	90.13 A P	<u>100.6</u> <u>A</u> <u>P</u> offset: 0	51.07 A P	44.89 A P	82.07 A P	<u>4.19 A P</u> offset: -60	0.008
8360.99MHz, USB, Rcp-Rcp	11	1	1	1	<u>1</u> <u>1</u>	$\frac{4}{\text{offset:} -161}$	977.2 <u>A</u> P offset: 1	583.9 <u>A</u> P offset: 0	$\frac{178.5}{_{\rm offset: 0}} \underline{A} \underline{P}$	283.9 A P	675.8 <u>A</u> P offset: 18	0.004 -
8376.99MHz, USB, Rcp-Rcp	<u>3</u> 2	<u>3</u>	<u>3</u>	2	<u>3</u> <u>2</u>	3.861 A P	919.6 <u>A</u> P offset: 1	593.7 A P	<u>204.9</u> <u>A</u> <u>P</u> offset: 0	<u>304.4</u> <u>A</u> <u>F</u> offset: 2	779.3 <u>A P</u> offset: 18	
8392.99MHz, USB, Rcp-Rcp	<u>5</u> 3	<u>5</u>	<u>5</u>	<u>3</u>	<u>5</u> 3	5.121 A P	810.1 A P	$\frac{570.6}{\text{offset: 0}} \underline{A} \underline{P}$	<u>193.3</u> <u>A</u> <u>P</u> offset: 0	264.5 A F	36.68 <u>A</u> P offset: 17	0 200 400 500 800 1000 1200
8408.99MHz, USB, Rcp-Rcp	<u>7</u> <u>4</u>	7	7	<u>4</u>	<u>7</u> <u>4</u>	4.591 A F	<u>883 A P</u> offset: 1	$\frac{551.6}{\text{offset: 0}} \underline{A} \underline{P}$	$\frac{194.3}{_{\mathrm{offset:}\ 0}} \underline{A} \underline{P}$	277.5 A P	$\frac{744.1}{_{\rm offset: 18}} \underline{A} \underline{P}$	

Performance

- Benchmarks done on 6-node cluster
- Dual Opteron 246 machines (2 GHz)
- Performance comparable with DiFX

12

Slide #: 8

14

Correlation on GPUs?

• Initial attempt: offload FFTs on GPU: Improvement less than a factor of 2.

Too much data transfer between main memory and GPU?

- Second attempt:implement full delay compensation and correlation on GPU: Using CUDA, work in progress.
- NVIDIA Tesla C870 with 1.5GB of memory

Distributed Correlation

Running a single correlation on multiple clusters

- Workflow Manager (PSNC)
- VLBI Grid broker (PSNC)
- Web Services (SOAP)
 - vex2ccf: Creates control file template from VEX
 - Data providers: Provides chunks of data and transfers them to GridFTP servers.

Implies staged correlation (uncorrelated data hits disk)

Distributed Correlation

Distributed correlation works:

- Succesful correlation done on two clusters in Poznan
- Third cluster @JIVE being added

But:

- Grid certificates don't fit our community; use ssh instead.
- Existing HPC clusters are not necessarily suitable:
 - NFS performance problems.
 - Job scheduling seems to favour small jobs.
 - Libraries not always present.
 - Infiniband MPI implementations can be quirky.

AutoBAHN

- JRA within GEANT2 developing a bandwidth-on-demand facility across domains
- Implemented by NRENs of Greece, Ireland, Poland and Croatia, using the GEANT2 testbed
- More NRENs working on deployment (but not SURFNet?)
- Interfaces to other BoD-systems being developed (Internet2).
- Two ways of making reservations:
 - Interactive through web interface
 - Using a webservice

Using AutoBAHN for eVLBI

Interesting for several reasons:

- Many arrays don't observe 24/7
- Correlators in different locations
- Reduce cost?

Successfully demonstrated at SC08:

- Circuits configured directly by correlator
- Data streamed directly into DAS-3 cluster
- Also included data from Boston through Internet2 DCN

Future Development

- Pulsar Binning
- Finish GPU evaluation
- Add VDIF support
- Add jive5a support

Conclusions

- SFXC is ready to do real science.
- AutoBAHN is a promising technology.
- Can't run on just any cluster.
- Offloading FFTs on GPU is not worth it.

Thanks

- The GEANT2 AutoBAHN team
- Dominik Stoklosa, Marcin Okon and everybody else involved in FABRIC at PSNC

