

Prospects for a Future JANET 2012/13 and beyond

David Salmon - JANET(UK)
40G & 100G slides from Rob Evans – JANET(UK)

Overview

- Current JANET SuperJANET5 backbone
 - Architecture
 - Services
 - High capacity
 - 40Gb/s service
 - 100Gb/s trial
- Research infrastructures
 - JANET Lightpath examples
 - JANET Aurora dark fibre
- Emerging issues for a Future JANET

JANET Communities

- HE & Research
 - Since the beginning 1984
 - 25th Anniversary of JANET 2009
 - 15th Anniversary of JANET(UK)
 - UKERNA as it was
- Further Education age 16+
- Schools
 - Not directly connected
 - 10 additional aggregation networks
- User base potentially 18M

SuperJANET5

- 2006 to 2012/13
- Architecture
 - Fibre footprint
 - Regional & backbone structures
 - Service layers
 - Lightpath service implementation

JANET Services

- JANET IP
 - High capacity
 - Core at 40Gb/s
 - High reliability & resilience
- JANET Lightpath
 - Mid to high capacity point-to-point circuits
- JANET Aurora
 - Dark fibre research platform

JANET Lightpath Service

- Dedicated Network capacity for projects
 - Point-to-point circuits
 - Typically about 1Gb/s
- About 30 paths configured
 - Across about 15 projects
- New infrastructure
 - Reviewing provision & reinstatement with projects & US providers

Initial Lightpath Core Topology

- ➤ Uses Existing Circuits
- ➤ Supports existing lightpaths

EoMPLS

Fine-grained capacity provisioning

Generic Service Model

Services

Structuring Layer <1Gbit/s - several (10 - 100 + Gbit/s) in

(100+ Gbit/s in future)

Lightpath examples

- eVLBI
- LCG
- HPC & visualisation
- Music recording...

JANET at 40Gb/s (STM256)

Slides from Rob Evans JANET(UK)

Why increase speed?

20/04/05 25/07/05 29/10/05 02/02/06 09/05/06 13/08/06 17/11/06 21/02/07 28/05/07 01/09/07 06/12/07 11/03/08 15/06/08 19/09/08 24/12/08 03/03/05 07/06/05 11/09/05 16/12/05 22/03/06 26/06/06 30/09/06 04/01/07 10/04/07 15/07/07 19/10/07 23/01/08 28/04/08 02/08/08 06/11/08

14

Equipment specification

- Ciena cards made by Stratalight
- First generation card
 - PMD tolerance: 2.1ps DGD
 - Duobinary encoding
- Second generation card
 - PMD tolerance: 2.5ps DGD
 - 8ps with compensation
 - DPSK encoding

Fibre characteristics

		A to B	B to A
	Length (km)	DGD (ps)	DGD (ps)
London – Telehouse	25.10	1.44	0.47
London - Telecity	28.30	1.4 5	0.49
Reading - Telehouse	116.50	0.75	1.64
Reading - Telecity	113.30	0.74	1.64
London – Leeds	379.68	15.46	13.66
Reading - Warrington	322,85	10.01	11.52
Warrington - Leeds	107.00	0.15	1.31
London - Bristol	252.94	2.03	1.89
Bristol - Reading	150.00	1.10	0.84

Phase 2: Nov 2008

- Outside specification for Ciena cards
 - Even with external dispersion compensation
- Alternative solution: Nortel
 - Uses Polarisation Multiplexing
 Differential Quadrature Phase Shift
 Keying (POLMUX-DQPSK)
- Carried as 'alien wavelength' on CoreStreams

POLMUX-DQPSK

Quadrature Phase Shift Keying

2 bits per symbol, ~ 1bit/s/Hz

POLMUX-DQPSK

- Two DQPSK signals sent down the fibre at the same frequency with different polarisations
- 2 x 2 bits per symbol = 4 bits per symbol
 - $-\sim 2$ bit/s/Hz
- Can carry 100Gbit/s signals (112Gbit/s for ODU-4) within neighbouring 50GHz ITU grid

What do we have

US Inauguration

21

Credits

- Verizon Business worked very hard with us to make this happen
- Ciena
- Nortel
- Alcatel-Lucent and Juniper

100Gbps Transmission Trial

Rob Evans JANET(UK)

Credit...

- Much of the work here was performed by Verizon and Nortel
 - We were mainly observers
- Especially
 - Tom Sims at Verizon
 - Alan Beard at Nortel

100G Transmission

- At the optical layer, line side and client side are very different.
- Client side tends to be standardised
 - Ethernet, SDH
 - Connect to the users of the network
- Line side is often proprietary
 - Forward Error Correction algorithms
 - Client side encoding

100G Transmission

- Optical equipment vendors working on 100Gbps independently of IEEE 100Gbps ethernet standardisation
 - Still useful in the meantime to carry multiple 1/2.5/10/40Gbps signals on a single wavelength
 - Not totally in isolation, of course
 - Needs to be fast enough to carry 100GE
 - Needs to be fast enough to carry ODU-4

100G Transmission

- Existing DWDM systems use ITU grid
 - Wavelengths 50GHz apart
- 100G should fit in same grid
 - Too much deployed kit for anything else
- POLMUX-QPSK

- ~100km dark fibre
 - London to Reading
- Three neighbouring 50GHz channels
 - 100, 40 & 10Gbps

lingcarde in Europa

- PMD Emulator
- Ethernet & SDH test sets
- Optical Spectrum Analyser
- ...and the only two 100G Nortel

- 100Gbps signal in centre grid position
 - POLMUX-QPSK
 - Some of the D/A & A/D circuitry isn't working at 100Gbps yet
 - Two POLMUX-QPSK carriers of ~50Gbps within same 50GHz grid spacing
- 10Gbps signal one side
 - Duobinary

DOLMIN ODCK

40Gbps signal other side

- PMD simulator increased 'instantaneous' PMD from 0 to 150ps
 - Equivalent to ~50ps DGD
- 10G SDH test set started recording errors at ~21ps mean DGD
- 40 & 100Gbps FEC started having to work at ~40ps mean DGD
- Started to get client side errors at

In context

- Worst mean DGD we've seen on our fibre is ~15ps.
- On trial link, 100G transmission was working fine with much worse simulated PMD.
- Encouraging for rolling out 100G on installed fibre.

JANET Aurora

A Dark Fibre Facility for Photonics and Optical Networks and Systems Research

Aurora

What is JANET Aurora?

- A dark fibre facility to support research on Photonics and Optical Networks and systems
 - Not a "production" network
 - Not a "production" testbed
 - A flexible platform to support University Research

Background

- Early discussions in 2001-2002
- 2003-2004 UKLight case made & funding secured
- Circuit oriented network (Lightpaths)
 - Implemented with TDM technology (SDH)
- A small dark-fibre facility
 - Initially lower priority, then many additional funding & committee delays
 - Eventually procured in 2005, and first phase in service Dec 2007 – 3 universities
 - Second phase completing in May 2009 2 more universities
- Total about £4M over about 3.5 years
 - Funded with five sites until May 2011 (2 years operating)
 - FROM HEFCE via JISC

Why dark fibre?

- Photonics Work at this level needs a dedicated fibre network
 - Researchers can put their own equipment on the fibres
 - Possibly equipment they have built themselves
- Investigate new devices & components
 - Lasers, Amplifiers, Modulators...
 - All the elements to make communication systems work
- New transmission techniques
 - Higher capacity (more bits/s) on each wavelength
 - More wavelengths
- Avoid disrupting other users
 - This kind of work can't possible be done on shared

What have we procured?

- Access (lease) a pair of fibres
 - linking Research groups at five Universities
- Access to intermediate locations for installing equipment
 - Researchers will put Optical Amplifiers and Dispersion Compensators in these locations
 - possibly ROADMS/WSS in future

JANET Aurora

Deployment

- Virgin Media (ntl:Telewest Business) are approaching the end of the deployment
- Much iteration on testing and accepting fibres to meet the specifications
- Access policy agreed
 - Accompanied access no extra cost (within reason)
- Copyright JNT Association Three days 8"In Otto Cowo ksho ster in

Target Fibre parameters

- Maximum span loss 17dB
 - Standard splice losses apply (<0.2 dB)
 - All spans fully spliced (no connectors except terminal ODFs)
- Chromatic dispersion < 1100ps/nm
 - Per span
 - except longest links ~> 65km where 1200ps/nm is the limit
- Maximum PMD 2.5ps
 - University to University NOT per span
- Aimed for spans of <50km
 - in practice there are several between 60 and 70km, and one at 73km

Looking for

Dispersion (PMD) Tests

Good – very little spreading

Bad – 25 times as much spreading

What will JANET Aurora be used for ?

Photonics Examples

- Phosphorus Project EU FP6 funding
 - End-to-end lightpath provisioning
 - Co-scheduling with GRID resources
- Photonics Device research
 - Install bespoke optical equipment on fibres (lasers/modulators/compensators)
 - Ultra-fast photonics research
- Optical Burst Switching
 - Flow triggered switched lightpaths (genuine lambdas/wavelengths) 160Gb/s trials undertaken
- OTDM see following slides

Field Trial of WDM-OTDM Transmultiplexing employing Photonic Switch Fabric-based Buffer-less Bit-interleaved Data Grooming and All-Optical Regeneration

<u>G. Zarris</u>¹, F. Parmigiani², E. Hugues-Salas¹, R. Weerasuriya³, D. Hillerkuss⁴, N. Amaya Gonzalez¹, M. Spyropoulou⁵, P. Vorreau⁴, R. Morais⁶, S.K. Ibrahim³, D. Klonidis⁵, P. Petropoulos², A.D. Ellis³, P. Monteiro⁶, A. Tzanakaki⁵, D. Richardson², I. Tomkos⁵, R. Bonk⁴, W. Freude⁴, J. Leuthold⁴, and D. Simeonidou¹

- 1 Photonic Networks Laboratory, University of Essex, U.K.
- 2 Optoelectronics Research Centre, University of Southampton, U.K.
- 3 Photonic Systems Group, Department of Physics and Tyndall National Institute, University College Cork, Ireland
 - 4 Institute of Photonics and Quantum Electronics, University of Karlsruhe, Germany
 - 5 Athens Information Technology Centre, Greece
 - 6 Nokia Siemens Networks Portugal S.A., Portugal

First Experimen

Issues for a Future JANET

Contract structures

- JANET Backbone
 - Core
 - Arcs
- Current cost model has multiple components
- Better if this was simpler

Fibre Options

- Contracts
 - Continue to lease ?
 - Would IRUs be better value?
 - Look into advantages/differences
- Fibre characteristics
 - Learn from Aurora experiences
 - Mandate full characterisation ?
 - What specifications to set?
 - Also developments in fibre testing...

Distributed PMD testing

Layer 2 transmission

- Technology options
 - EoMPLS in service
 - PBB-TE trials over next 2 years
 - MPLS-TP watching closely
- Maintain a rapid deployment service
 - Much quicker than contractual response at optical layer
 - Need to acquire and install new transponders

IP Layer

- Not expecting much evolution here
- Probably more Organisations (Universities...) implementing dual connections for resilience

Capacity

- Currently 40G
- Trials at 100G
- Broadly OK here technical roadmap is clear to 100Gb/s
- Funding may be interesting in current climate
 - NRENs
 - And projects

Operational issues

- Do we manage the optical layer ourselves
- Do we continue to sub-contract?
- JANET as an NREN needs to keep close enough to the infrastructure to make sure we can deliver what our communities need

Transmission layer options

- Optics
- ROADMS WSS
- Fully flexible optics
- Tuneable
- "Colourless" switching
 - wavelength agnostic
 - any port to any port

Transparent Optical Cloud?

- Alien wave admission
 - Power levels
 - Conformance to ITU grid & spacing
- Transmission
 - Range short vs. long
 - Dispersion compensation
 - Chromatic, PMD (2nd order PMD??)
- Is it technically feasible to operate a network of this nature
- Is it affordable?
- How would we monitor it
 - Operationally SLAs etc
 - Traffic deep packet inspection ?

Future Service Model

?

Services

Structuring Layer
Circuits
<1Gbit/s – several
Gbit/s
(10 – 100+ Gbit/s) in
future

Bulk Capacity
Wavelengths
1 – 10 Gbit/s
(100+ Gbit/s in future)

Support for eVLBI

- Lightpaths
 - Technology roadmap to 100Gb/s seems secure
 - Policy & Funding will need to be addressed
 - High capacity services will be expensive, particularly in the early years
- Aliens transparent wave service in future ?
- Shared Fibres ?
 - Could Aurora & e-Merlin type requirement be integrated into the JANET fibre footprint in any way?
- LOFAR

Infrastructures

Summary

- JANET services in good shape for supporting research requirements
- High capacity for eVLBI should not present any fundamental technical problems
 - Funding will need to be discussed & planned
- JANET(UK) has 1.5 to 2yrs to plan for the next procurement
- Most evolution expected at the optical level
- "Future JANET" will need to meet all

End