

Progress and Status of e-MERLIN

Ralph Spencer on behalf of the e-MERLIN team

Madrid June 2009

e-MERLIN

- Major upgrade to MERLIN array
- New optical fibre network connecting 7 telescopes to new correlator at Jodrell Bank Observatory
- Unique combination of 50-150 mas resolution and µJy sensitivity
- Crucial to resolve AU-scale star-formation processes in Galaxy and kpc-scale regions at z~1

New Receivers
New IF system
New Links
New Science!

Capabilities

- 150, 40, 10 mas re:
- ~2 μJy sensitivity i
 - − <µJy in deep fi€</p>
 - ~30 µJy in ~1 n
- Wide fields
 - Out to HPBW of
- Spectroscopy
 - 16 placeable su recirculation
 - Can mix/trade polarisations
 - Correlator almo
- Much improved ape
 - Via frequency c
 - May help snaps
- Spectral mapping
 - **1.3-1.7; 5-7/4-**
- Polarization (L,R → IQUV)
- Astrometry
 - Goal is < 1 mas wrt ICRF: using GPS measurements of troposphere delay (5cm error -> 5mm); closer calibrators

Capabilities

- 150, 40, 10 mas re
- ~2 μJy sensitivity i
 - <µJy in deep fie</p>
 - ~30 μJy in ~1 r
- Wide fields
 - Out to HPBW of
- Spectroscopy
 - 16 placeable su recirculation
 - Can mix/trade polarisations
 - Correlator almo
- Much improved ape
 - Via frequency c
 - May help snaps
- Spectral mapping
 - **1.3-1.7; 5-7/4-**
- Polarization (L,R →
- Astrometry
 - Goal is < 1 mas troposphere delay (5cm error -> 5mm); closer calibrators

The University of Manchester
Jodrell Bank
Obcorvatory

Commissioning

- New receivers/IF installed
 - wider bandwidth, improved Tsys, quick band-change
- Samplers & data transmission being installed (2 done)
 - 0.5 GHz (covers L-band) done, 2 GHz (NRAO design) later this year
- Optical fibre network in place
- New timing system developed and being installed (2 done)
 - H-maser signal transferred on fibre+ GPS at each telescope
- Prototype correlator (DRAO, Penticton) arrived over last few months
 - 2 station boards + 1 correlator board+ Xbar
 - up and running
- New array control software
 - up and running

Time/s

The University of Manchester Jodrell Bank Observatory

Results $\Phi_{\text{one way}} \, \& \, \Phi_{\text{round trip}} / 2$

B₂b

110 km

Difference plot

$$(\Phi_{\text{one way}} - \Phi_{\text{round trip}}/2)$$

Allan deviation plot

Current Status

- 1 April 09
 - first 'analogue light' with 4 GHz IF 6.8 GHz methanol line in IF
- 10 April 09
 - first 'digital light' 512 MHz IF through samplers into correlator
- 13 April 09
 - autocorrelation of methanol line
 - 1024 channels across each of 8 x 512 MHz sub-bands
- 17 April 09
 - first remote telescope out-fitted and connected
 - auto correlation of methanol line
- 20 April 09
 - correlator synchronised with two telescopes
 - delay models running; started fringe search...
- 24 April 09
 - first fringes, 3C84: delay model OK
- May 09
 - checking fringe rotation, 0.5 GHz/1 GHz input, synchronisation...
- June 09
 - Expres 4 Gbps input from IBOBs

Current Status

Expres 4 Gbps input from IBOBs

Coming months

- Continue single baseline tests
- 4 station tests
 - next 2 station boards now installed
 - next production run of IF, digital boards: Summer
 09
- Full array & full bandwidth
 - requires further SB, BB (Nov 09), 4 Gs/s samplers
 - regeneration electronic for last, most distant telescope at Cambridge (Dec 09)
- Engineering/commissioning obs 2009
- Limited, shared-risk observations in 2010A
- Standard operations 2010B

e-MERLIN & VLBI

e-MERLIN Legacy Programme

- National and international consortia prepared proposals for large, high impact science projects
- 15 proposals submitted from 325 scientists from 119 institutes
 - already reaching a much wider community
- Reviewed by external referees and Legacy Steering Group chaired by Prof R Ivison; rigorous assessment following UK PATT procedure
- 5000 hours allocated to 11 projects, covering topics from the formation of planets to the formation of galaxies in the early universe.
 - important demonstration of community interest & potential science

The University of Manchester

Jodrell Bank Observatory Legacy programme as a whole:

 Breadth of legacy proposals demonstrate the versatility of e-MERLIN

Proposed projects

- Programme covers ~50% of e-MERLIN time in first 5 semesters
- In total ~10,000hrs of e-MERLIN time were proposed for
 - Well oversubscribed

Allocated programme:

GALACTIC PROJECTS:

Feedback processes in Massive SF

Thermal jets from low mass stars

COBRaS

 Vlemmings/Stappers et al. 	160hrs **
---	-----------

 Greaves et al. 72hrs **

 Hoare/Vlemmings et al. 450hrs

> - Rodriguez et al 180hrs

> - Prinja et al. 294hrs

EXTRA-GALACTIC PROJECTS:

•	۱F	Μ	М	ΤN	IGS

PEEBLES

- LIRGI
- Extragalactic Jets
- **AGATE**
- e-MERGE
- Gravitational lenses

– Beswick	/McHardy	ı et al	810hrs
– beswick	/ MCHaruy	yetai.	OTOLLIS

- Conway/Perez-Torres et al. 353hrs
- Laing/Hardcastle et al 375hrs
- Simpson/Smail et al 330hrs
- Muxlow/Smail/McHardy++ 918hrs
- Jackson/Serjeant et al 228hrs **

TOTAL: 4170hrs

- **Up to 5000hrs can be allocated. Remaining 830hrs to be allocated by LSG to preidentified projects pending initial results
- DETAILS OF ALL PROJECTS (inc Proposals allocations etc) ARE AVAILABLE AT

http://www.merlin.ac.uk/legacy/

Legacy projects (1) galaxy formation and evolution

Galaxy formation (Grav lenses)

- Gravitational lenses test CDM models (halo substructure) and probe central ~10pc
 - Requires e-MERLIN sensitivity & resolution/astrometry
- New survey (>1000 lenses)
 Herschel SCUBA2 -e-MERLIN
 - e-MERLIN vital for confirmation (CLASS experience)

Galaxy evolution (e-MERGE, AGATE)

- Ultra-deep (cluster lenses): starformation in normal galaxies at z~5
- Deep (0.25 dg²): star-formation history z~0.5-3 (extinction-free; AGN; sub-mm quiet SFG)
- Environmental impacts on galaxy evolution: clusters;
 - e-MERLIN required to resolve typical few-kpc star-forming regions at z~1 and identify/separate AGN (HDF experience)

Legacy projects (1) galaxy formation and evolution

Legacy projects (2)

From galaxies to Star and planet formation

Birth & death of stars in the Local Universe

(LeMMINGS, LIRGI)

- Add to multi- λ Nearby galaxy samples (SINGS,KINGFISH, GOALS...)
- Super star clusters; determination of IMF via SN rates
- Census of AGN; identify intermediate-mass black holes; ULX
- Magnetic field in LIRGS
- RSNe detection & AGN separation in LIRGS
 - e-MERLIN resolution essential to resolve SSC,SNR,AGN (M82 experience)

Physical processes of star-formation (Massive star-formation, stellar jets, CoBRAS)

- Trace onset of feedback processes by jets/winds during early stages of massive star formation.
- First direct test of the X-wind model for protostellar jets
 - e-MERLIN can resolve key physical processes

Formation of planetary systems (PEEBLES)

- Detect cm-sized particles in planet-forming disks
 ~1 AU, ~1M_E
- Astrometric detection of Jupiter-mass planets around low-mass stars
 - e-MERLIN required for spatial and spectral separation of emission components

Legacy projects (3) Extreme environments

Pulsar proper motions (e∏)

- Proper motions of many pulsars
- Physics of neutron star formation during SNe
- Double the number of pulsars with accurate distances & velocities
 - e-MERLIN resolution essential, multiepoch proper motions

Extragalactic Jets

- Dynamics of jets, low luminosity radio jet deceleration on sub-kpc scales
- Magnetic field configuration surrounding jets
- Particle acceleration in hotspots
- Polarisation and faraday rotation across e-MERLIN bands
 - e-MERLIN can resolve the key physical processes'

Conclusion

- E-Merlin will have a major impact on high resolution astronomy
- Huge progress in past few months but much to do

E-Merlin resolution

Huge pr do

igh

much to