Extragalactic Surveys: Prospects from Herschel-PACS

Bruno Altieri

Max-Planck-Institut für extraterrestrische Physik, Garching

PACS Team, PACS GT extragalactic survey (PEP) Team

PI: Dieter Lutz

PEP in a nutshell

- Comprehensive far-infrared survey of the extragalactic sky
- 75μm, 110μm & 170μm
- "multi-cone" strategy coordinated with SPIRE
- Coverage :
 - 4 sq. deg. to confusion limit (CL) at 170mm (11 mJy)
 - 0.75 sq.deg to 7 mJy at 110mm
 - 150 sqarcmin in the GOODS-S to 1.5 mJy at 75 mm & 110 mm
- Survey set up as a 'shared GT KP, with framework set up by a MOU

Institution	Time (h)	
MPE (PI: D. Lutz)	360	
CEA (D. Elbaz)	80	
IAC (J. Cepa)	80	
ESA	80	
INAF (P.Andreani)	50	
MS (M.Harwitt)	10	
Total	660	

PACS in a nutshell

- \bullet Camera and spectrometer for 60-200 μm
- Camera operating simultaneously at [75μm or 110μm] and 170μm
- Instantaneous FOV 1.7'x3.5'
- PSF FWHM: 6-13"

Sensitivity: point source ~4mJy 5σ 1 hour 1sq.deg. to ~10mJy 5σ: ~100 hour

First FM-ILT 'reduced' data

• Determine the cosmic evolution of dusty star formation and of the infrared luminosity function

• Elucidate the relation of far-infrared emission and environment, and determine clustering properties

• Determine the contribution of AGN

COBE 1996: Detection of CIB

Cosmic background

Dole et al. 2006

Detection of modest size samples of 15µm sources SED- and redshift-based extrapolation \Rightarrow Most of CIB originates in sources detected in the mid-IR: (U)LIRGs at z~1

Spitzer 2006: CIB resolution on statistical basis

Dole et al. 2006:

Stacking of far-infrared signal at the positions of many mid-infrared sources.

- Statistical detection down to S(24 μ m)-60 μ Jy
- Representing 70% (90%) of CIB at 160mm (70mm)

Herschel 2008+: CIB resolution into individual sources

CIB Resolution into **individually 5s detected** sources for current blank field PACS survey plans: ~80% @75µm ~85% @110µm ~55% @170µm

... and more from lensing clusters, stacking, fluctuation analysis,...

Simulated deep PACS survey

Deepest ISOCAM image

ISOCAM 15 microns (LW3 filter)

Abell 2390 contours over an HST (F814W) I-band image.

Altert et al. 1999

Arcseconds

... note the substantial dilation of surface area - especially near the cluster centre *Case of Abell 2218 for z=1 background sources*

• Determine the cosmic evolution of dusty star formation and of the infrared luminosity function

• Elucidate the relation of far-infrared emission and environment, and determine clustering properties

- Determine the contribution of AGN
- Determine the infrared emission and energetics of known galaxy populations

Franceschini et al. 2006

Luminosities in reach for various IR wavelengths

Reachable L(z) for surveys of varying depth for a *single star-forming SED family* (D. Elbaz)

PACS needed to go deep at $z \sim 1-2$ and probe rest frame far-infrared in a way that is robust to SED variations, AGN contribution...

• Determine the cosmic evolution of dusty star formation and of the infrared luminosity function

• Elucidate the relation of far-infrared emission and environment, and determine clustering properties

• Determine the contribution of AGN

Probing a wide range of environments

• Determine the cosmic evolution of dusty star formation and of the infrared luminosity function

• Elucidate the relation of far-infrared emission and environment, and determine clustering properties

Determine the contribution of AGN

Relation of AGN, star formation, feedback...

Global evolution of cosmic star formation and of accretion are similar – how do AGN growth and star formation relate in detail?

T [Gyr]

Springel et al. 2005

• Determine the cosmic evolution of dusty star formation and of the infrared luminosity function

• Elucidate the relation of far-infrared emission and environment, and determine clustering properties

• Determine the contribution of AGN

Example: Submm galaxies

...Intensely studied and showing formation of massive galaxies at z~2-3 $\,$

But even basic quantities like luminosity and dust temperature still uncertain! Sample rest frame SED peak.

Fields(s)	Size	Wavelength, 5σ depth	Time
COSMOS, XMM-LSS	2*2 sq.deg	110+170, <mark>11mJy</mark>	2*110h
Lockman, Groth, ECDFS	3*0.25 sq.deg	110+170, <mark>7mJy</mark>	3*34h
Goods-N	150 sq.arcmin	110+170, 3mJy	27h
Goods-S	150 sq.arcmin	75,110,170, <mark>1.5mJy</mark>	2*115h
5 z~1 clusters	5' x 10'	110+170, 7mJy	5*2h
10 lensing clusters	4' x 4'	110+170, 1.5 -3mJy	70h

