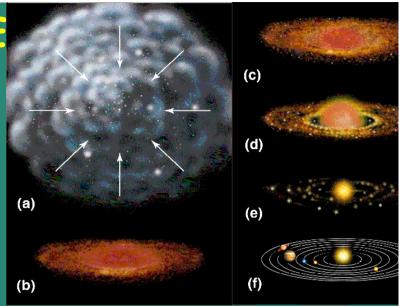

SPECTRAL SURVEYS of STAR FORMING REGIONS with HIFI

Cecilia Ceccarelli Laboratoire d'Astrophysique de Grenoble

HIFI = MOLECULES

3 REASONS TO STUDY MOLECULES IN STAR FORMING REGIONS: 1. THE MOLECULAR COMPLEXITY

- How complex are complex molecules in SFRs?
- When and how are they formed?
- What is their fate?
- Are they incorporated in the bricks forming the future planetary system (meteorites, comets, planets...)? ⇒ Ex: ORIGIN of TERRESTRIAL OCEANS

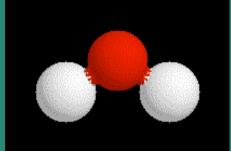

3 REASONS TO STUDY MOLECULES IN STAR FORMING REGIONS: 2. THE INTERPLAY BETWEEN THE MOLECULAR COMPOSITION AND THE STAR FORMATION PROCESS

The dynamics of the collapse (and mass loss) depend on the gas temperature and coupling with magnetic fields:

Gas cooling => line emission

 Magnetic field coupling => the ions
both temperature and ionization degree depend on the gas chemical composition

3 REASONS TO STUDY THE MOLECULAR CONTENT IN STAR FORMING REGIONS: 3. LINES ARE POWERFUL DIAGNOSTIC TOOLS



- Different lines from the same molecule are excited in regions of different temperature and density
- Different molecules are formed in regions with different internal and external physical conditions
- Lines are the only way to study the dynamics!

SEVERAL KEY MOLECULAR TRANSITIONS FALL IN THE HIFI RANGE

MOLECULES IN THE HIFI RANGE :

1. Major gas coolants: H_2O , CO, OH, C^+ ...

- 2. Major grain mantles components: H_2O , H_2CO , CH_3OH , $NH_3...$
- 3. Hot gas chemistry tracers: H_2O , SO_2 , $NH_{...}$
- 4. Ionization field tracers: C^+ , CO^+ , H_3O^+ , OH, CH^+ , HI...
- 5. Hydrides: LiH, FeH, SH, SiH....
- 6. Molecular deuteration: HDO, CH_2D^+ , OD...
- 7. Molecular shocks tracers: H₂O, CO, OH....

TRANSITIONS IN THE HIFI RANGE :

- 1. Ground state transitions of several light molecules
- 2. High energy transitions of several heavy molecules

HSO HIFI KPs of SRF:

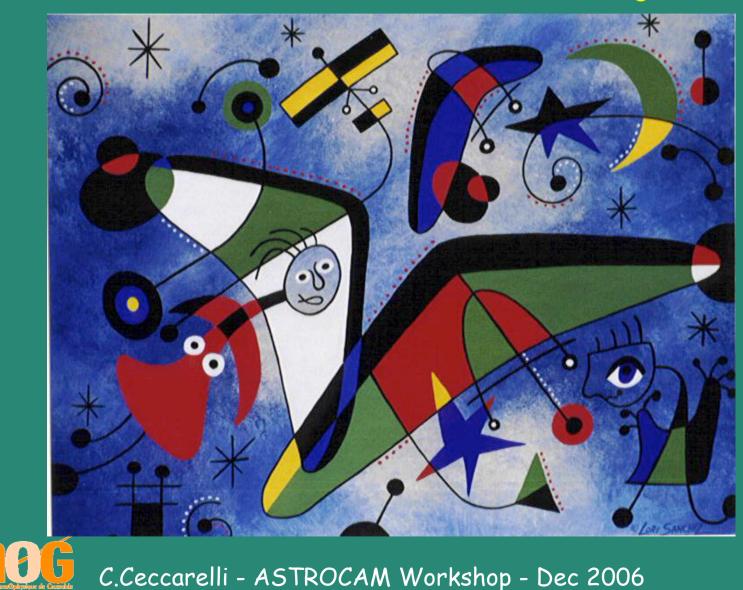
- HIFI (unbiased) SPECTRAL SURVEYS: A PRECIOUS AND (ALMOST) UNAVOIDABLE TOOL TO STUDY STAR FORMATION
- WATER LINE SURVEYS: WATER, A KEY MOLECULE ONLY DETECTABLE WITH SPACE-BORN TELESCOPES
- LINE SURVEYS OF Orion & SgrB2

1. HIFI WATER LINE SURVEY in STAR FORMING REGIONS KP

http://www.strw.leidenuniv.nl/~kempen/HIFI/

WATER IS ONE OF THE MOST ABUNDANT AND IMPORTANT MOLECULES IN STAR-FORMING REGIONS.

> PI: E.van Dishoeck Team composed by ~50 people HIFI GT ~400hrs


GOAL: TO TRACK THE WATER ABUNDANCE, COOLING/HEATING IN SFRs, AND TO USE WATER LINES AS DIAGNOSTIC TO PROBE WARM AND DENSE REGIONS.

HIFI WATER LINE SURVEY in STAR FORMING REGIONS KP

SOURCE TARGETS:	No
Pre-stellar cores	8
Low mass	34
Intermediate mass	8
High mass	24
Disks	17
Outflows	31
YSO: Radiation	17

LINE TARGETS: ~10 lines/source of $H_2O + 1$ line $H_2^{18}O$ ~3 lines/source CO, ¹³CO ~1 lines/source of OH and H_3O^+ few lines from other molecules in specific objects: C⁺, OH⁺, CH, CH⁺, SH⁺, NH⁺ C.Ceccarelli - ASTROCAM Workshop - Dec 2006

2. HIFI SPECTRAL SURVEYS OF STAR FORMING REGIONS KP : HS₃FR KP

HIFI Spectral Surveys of Star Formation Regions TEAM MEMBERS :

A.Bacmann, A.Baudry, E.Bergin, G.Blake, S.Cabrit, P.Caselli, A.Castets, E.Caux, C.Ceccarelli, J.Cernicharo, C.Codella, C.Comito, C.Dominik, E.Falgarone, A.Fuente, M.Gerin, F.Helmich, P.Hennebelle, T.Henning, E.Herbst, T.Jacq, A.Klotz, W.Langer, B.Lefloch, D.Lis, S.Maret, F. McGroarty, G.Melnick, B.Nisini, L.Pagani, B.Parise, J.Pearson, T.Phillips, M.Salez, P.Saraceno, P.Schilke, K.Schuster, M.Tafalla, S.Thorwith, F.van der Tak, C.Vastel, S.Viti, V.Wakelam, M.Walmsley, A.Walters , F.Wyrowski, H.Yorke

PI: C.Ceccarelli

HIFI Spectral Surveys of Star Formation Regions

ULTIMATE GOAL:

A COHERENT STUDY OF THE LINE SPECTRA IN THE HIFI FREQUENCY RANGE (500-2000GHz) OF SFRs AS FUNCTION OF MASS AND EVOLUTION

IMMEDIATE GOALS :

i) TO GUIDE THE SUCCESSIVE OBSERVATIONS WITH HSO-HIFI

ii) TO PROVIDE A LEGACY DATABASE FOR THE USE OF THE GENERAL ASTRONOMICAL COMMUNITY

HIFI Spectral Surveys of Star Formation Regions

ALLOCATION OF HIFI TIME :

COUNTRY	HOURS
FRANCE	100
HOLLAND	70
USA	50
GERMANY	26
ITALY	20
SPAIN (+MS)	10
TOTAL	276

HIFI Spectral Surveys of Star Formation Regions THE KEY TO SUCCESS: <u>SOURCE SELECTION</u> i.e. REPRESENTATIVES OF SOURCE CLASSES

- LOW MASS STAR FORMING REGIONS : PRE-STELLAR CORE, CLASS O SOURCE, OUTFLOW-SHOCK SPOT
- INTERMEDIATE MASS STAR FORMING REGIONS : EMBEDDED PROTOSTELLAR SOURCE
- HIGH MASS STAR FORMING REGIONS : HIGH MASS PROTOSTELLAR OBJECT, 2 HOT CORE SOURCES WITH LOW AND HIGH BOL LUMINOSITY

HIFI Spectral Surveys of Star Formation Regions

SOURCE LIST AND ALLOCATED GT TIME

ТУРЕ	hr	GT Time (hr)	PI + Country Resp.
Low mass Pre-Stellar Core: L1544/16293E	25	15Fr + 10It	Bacmann, Caselli
LIG44710293E Low mass Class O source: IRAS16293-2422	55	50Fr+5MS	Caux, Cernicharo
Intermediate mass Class 0 : OMC2- FIR4	50	30NL + 15Fr + 5Sp	<mark>Dominik</mark> , Ceccarelli, Fuente
Outflow-shock spot: 1557	30	20Fr + 10It	Pagani, Codella,
High Mass Protostellar Object: AGL2591	40	40NL	Helmich
High Mass Hot Core: 10 ⁴ L _o : NGC6334I	38	25 USA + 13Ge	Lis, Wyrowski
High Mass Hot Core: 10 ⁶ L _o : W51e	38	13Ge + 25USA	Comito, Lis
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			

C.Ceccarelli - ASTROCAM Workshop - Dec 2006

Spectral Surveys of Star Formation Regions

ON-GOING PREPARATORY WORK

a) Observations with ground-based telescopes: IRAM, JCMT, APEX, CSO

b) Modeling of the selected sources: radiative transfer and chemical models

PREPARATORY WORK: a) Observations - example 1 IRAS16293-2422 UNBIASED SPECTRAL SURVEY INTERNATIONAL CONSORTIUM:

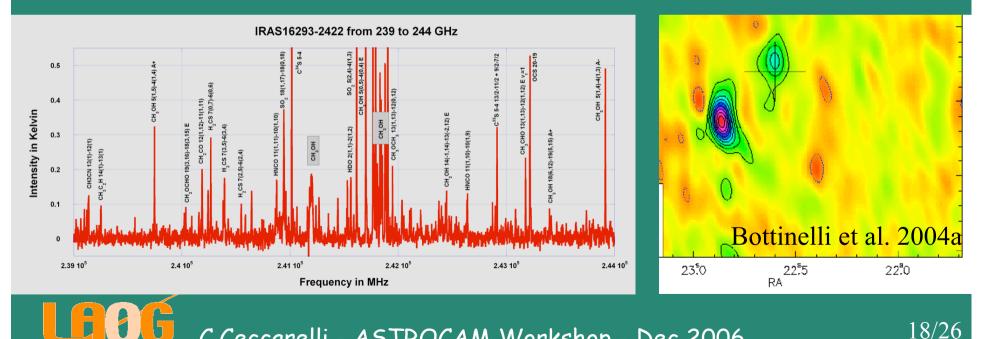
PI: E. Caux (CESR-Toulouse)

Co-Investigators: A.Castets, C.Ceccarelli, F.Helmich, P.Schilke, X.Tielens, E.van Dishoeck, A.Bacmann, S.Cazaux, C.Comito, C.Kahane, B.Parise, V.Wakelam, A.Walters

Institutes: CESR-Toulouse, LAOG-Grenoble, L3AB-Bordeaux, SRON-Groningen, MPI-Bonn, Leiden Obs.

STARTED IN 2003, COMPLETED IN 2006:

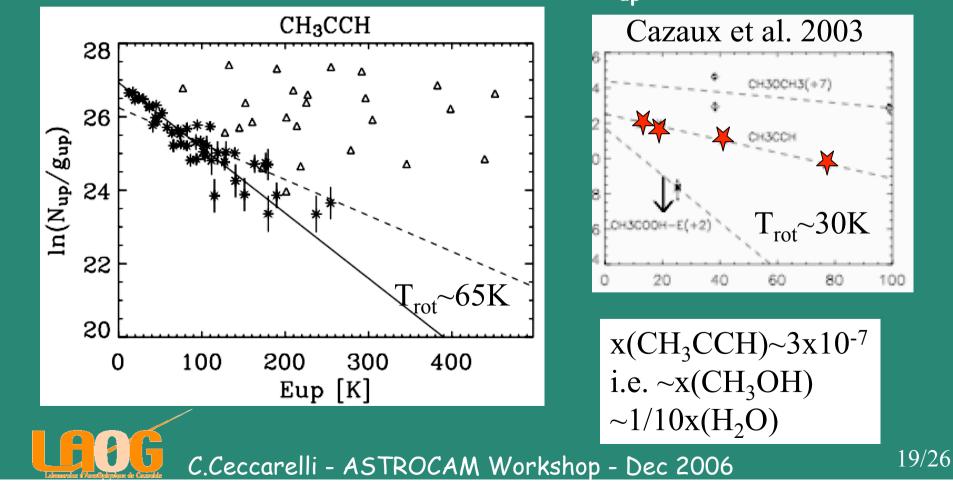
IRAM: 80-115, 129-165, 197-265; 265-274 GHz JCMT: 328-366 GHz APEX: 450 GHz planned, 366-370 done


→ DATA PUBLIC MID-2007

17/26

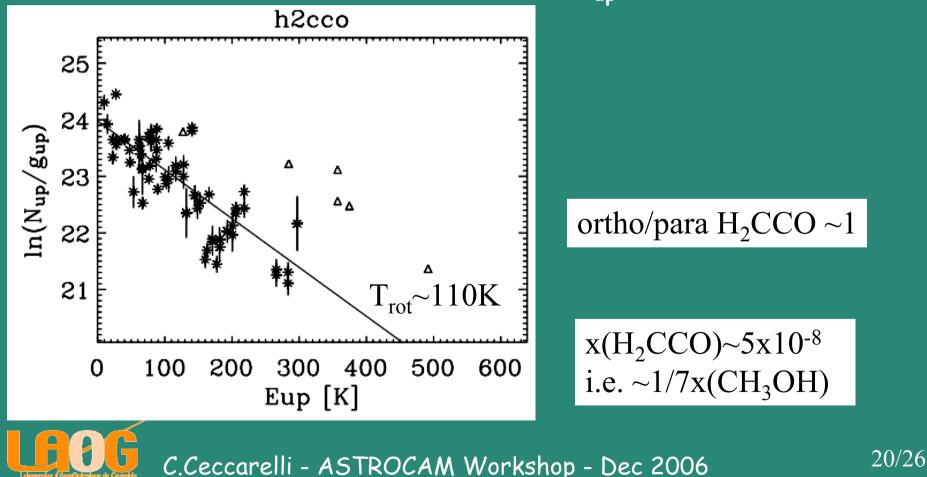
THE UNBIASED SPECTRAL SURVEY of IRAS16293-2422

RICH LINE SPECTRUM DOMINATED BY THE TWO COMPONENTS FORMING IRAS16293-2422:


1. THE COLD OUTER ENVELOPE, RICH OF DEUTERATED MOLECULES 2. THE WARM INNER ENVELOPE (HOT CORINO) ENRICHED OF COMPLEX ORGANIC MOLECULES

THE GROUND-TELESCOPES UNBIASED SPECTRAL SURVEY of IRAS16293-2422

SOME FIRST RESULTS:

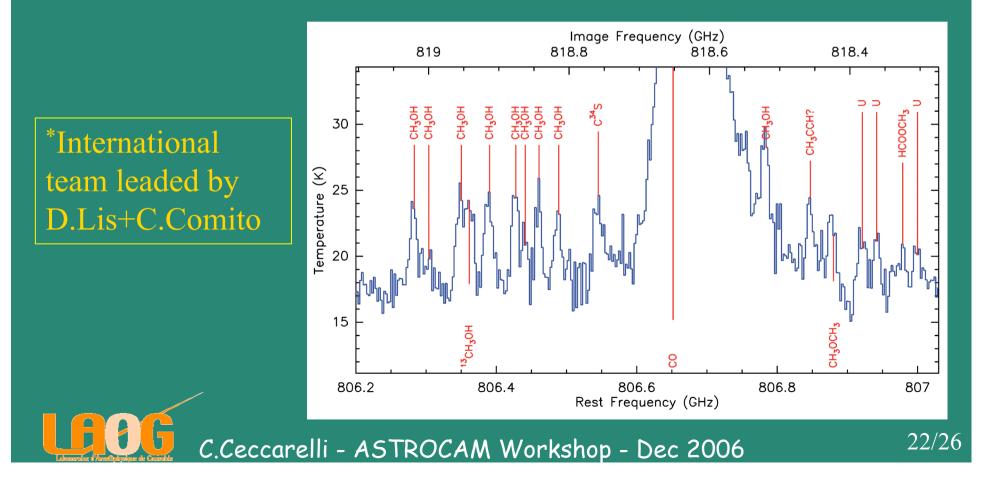

1. PROPYNE, 4 lines previously detected (Cazaux et al. 2003) : NEW: detected ~40 lines with $E_{up} = 10 - 250K$

THE GROUND-TELESCOPES UNBIASED SPECTRAL SURVEY of IRAS16293-2422

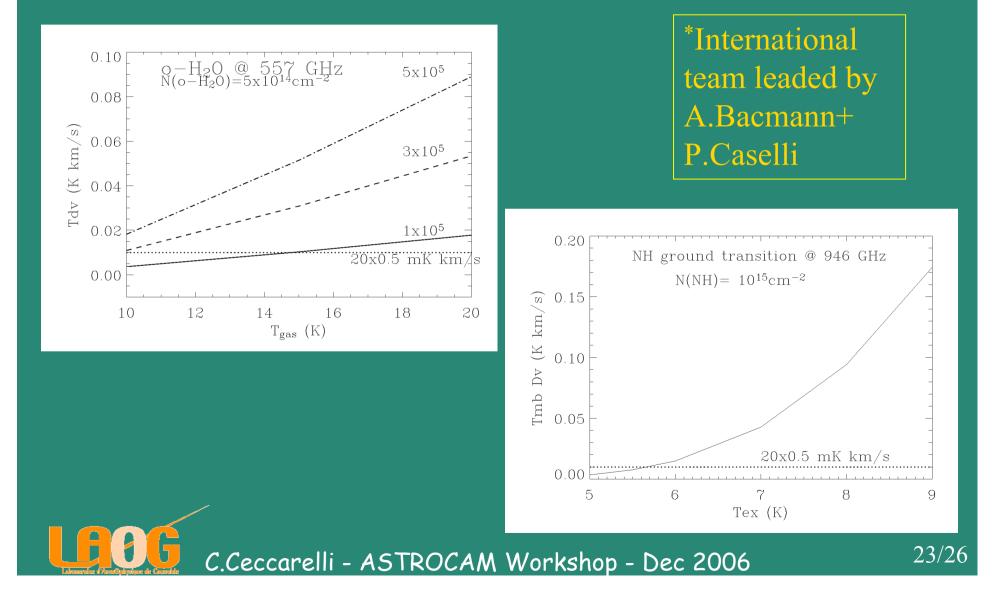
SOME FIRST RESULTS:

2. KETENE, not previously detected : NEW: detected ~ 70 lines with E_{up} = 10 - 300K

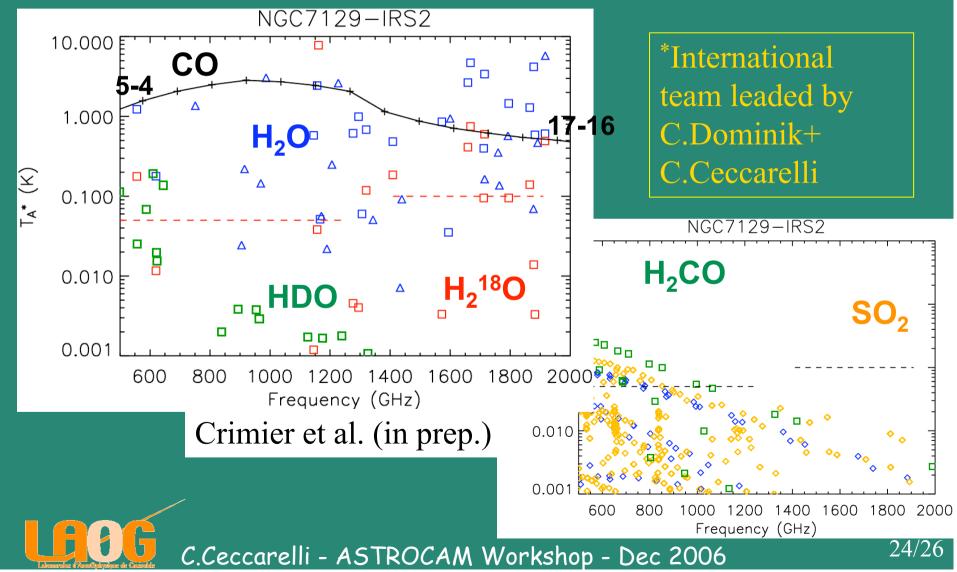
PREPARATORY WORK: a) Observations - example 2 INTERFEROMETRIC MAPS of INTERMEDIATE MASS PROTOSTARS *


Survey (JCMT, IRAM 30mt + Pdb observations) of several intermediate mass protostars to identify the best target for our KP. Based on it we finally selected OMC2-FIR4.

*International team leaded by A.Fuente HIFI 500GHz HIFI 2000GHz


PdB map @ 1mm continuum (Mar2006)

PREPARATORY WORK: a) Observations - example 3 CSO SURVEY @ 800GHz *


Survey of several massive protostars to identify the best target for our KP. Based on it we selected NGC6334I and W51e.

PREPARATORY WORK: a) Modeling- example 1 LINE EMISSION FROM PRESTELLAR CORES*

PREPARATORY WORK: a) Modeling- example 3 MAIN VOLATILES LINE MODELING OF OMC2-FIR4*

4. ...GETTING TO CONCLUSIONS (never loose your hope)

CONCLUSIONS: WE EAGERLY WAIT FOR HIFI SPECTRAL SURVEYS **OF STAR FORMING REGIONS** A PRECIOUS AND (ALMOST UNAVOIDABLE TOOL TO STUDY STAR FORMATION 26/26C.Ceccarelli - ASTROCAM Workshop - Dec 2006