HIFI XGal GT Key Program:

Physical and Chemical Conditions of the ISM in Galactic Nuclei

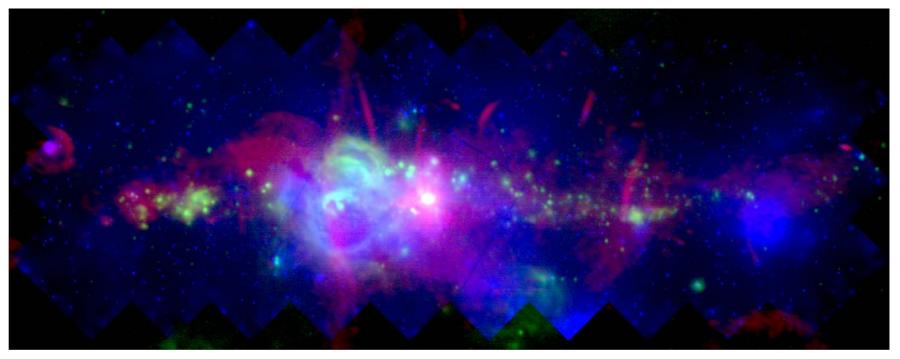
Key Program PI: Rolf Güsten Coordination team: Sabine Philipp, Andy Harris, Frank Israel, Carsten Kramer, Jesús Martin-Pintado (DAMIR-IEM-CSIC)

Andreas Eckart, Santiago Garcia-Burillo, Maryvonne Gerin, Thomas Klein, Steve Lord, Bhaswati Mookerjea, Pere Planesas, Jürgen Stutzki, Paul van der Werf, Nick Whyborn ISM in the Galactic Center (Rgc < 25 pc)

- Physics & Chemistry of the ISM in the Central Gas Layer

Starbursts, Ultraluminous galaxies, and AGNs

- Excitation of starbursts, ULIGs and AGNs
- Interacting galaxies (incl. the Antennae)
- The NUGA sample of galaxies hosting AGN
- Special Case Study: Cen A (NGC 5128)

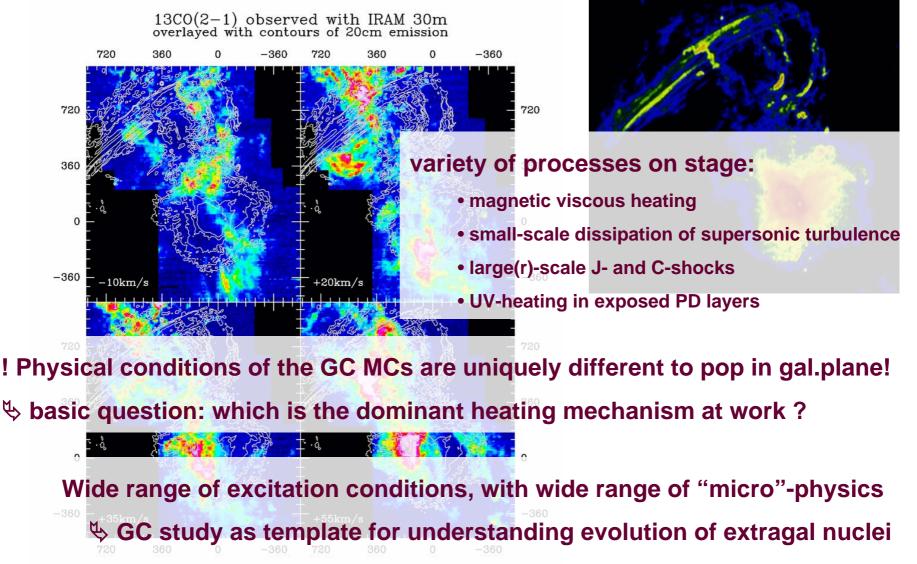

Chemical Complexity in Extragalactic Nuclei

- Line surveys towards extragalactic nuclei
- Absorption towards luminous extragalactic nuclei
- The Physics of the ISM in low-metallicity environments

Spanish Contribution to the HIFI ICC

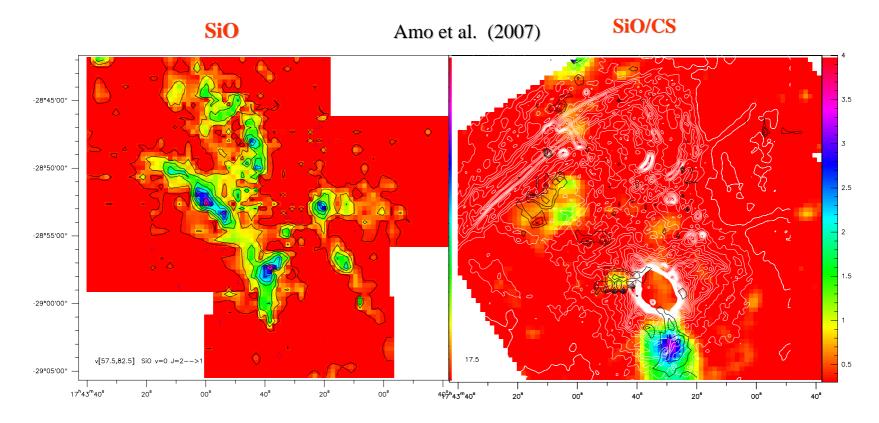
- OTF image reconstruction (Madrid single spectrum Analysis, MASSA)
- Data cube visualization (Madrid Data Cube Analisys, MADCUBA)

The Galactic Center


The GC shows:

Star formation (clusters & protoclusters) Large PDRs illuminated by clusters of massive stars Strong emission of X-rays (Fe 6.4 keV) and gamma-rays (XDRs) The ultimate super massive black hole candidate

The GC provides a unique laboratory for understanding the activities in the heart of the Milky Way as well as in nuclei of galaxies


The Galactic Center

Physics & chemistry of the ISM in the Central Gas Layer (R_{ac}<25pc)

Güsten, Philipp

Interaction between the NTF and the dense gas

Is the central vertical field uniform and how and where does it merge with the azimuthal field of the Galactic disk? What process produces the relativistic particles that illuminate the NTFs via their synchrotron emission?

The Galactic Center

Unbiased large-scale maps of of the dominant cooling lines:

Transition	V [THz]	Obs.Mode	Nyqu. Sampling	Area [arcmin ²]	Backend [GHz / sp.res]
[CI]	492	OTF /Ref	1/2	400	2.0 / 1 MHz
	809		1/2	400	
[CII]	1.90	OTF /Ref	1/2	400	2.4 / 2 MHz
[NII]	1.47	OTF /Ref	1/2	400	2.4 / 2 MHz

Specialty:

 <u>OTF map with fixed Ref</u>. need to have both polarisations at high resolution and a coverage of >600 km/s

The 20'x20' CII map will require 40.000X2 spectra!

Table 2.3 - Complementary observations with PACS

Transition	λ [μm]	Obs.Mode	Sampling [arcsec]	Area [arcsec²]	Beam [arcsec]
[0]	63	Raster	4.7	120x240	4.7
	145	Raster	9.4	120x160	10.8
[0111]	88	Raster	4.7	2x120x320	6.7
[NII]	122	Raster	9.4	80x240	9.2

The Galactic Center

Targeted observations towards prominent molecular features

(selected by different micro-physics in H_2O and high CO transitions (10-9 and 13-12)

- CND (UV, extreme turbulence)
- 3 quiescent massive cloud cores (small-scale dissipation of turbulence)
- **G0.18** (UV, magnetic heating)
- 2 thermal bridge filaments (PDR, most spect. clusters in the Galaxy)

Transition	V [THz]	Obs.Mode	Nyqu. Sampl.	Area [arcmin ²]	Backend [GHz / sp.res]
NH 1 ₂₃ -0 ₁₂	974.5	OTF /Ref	1/2	150	2 / 2 MHz
NH ₂ 1 ₁₁ -0 ₀₀	952.6	OTF /Ref	1/2	150	2 / 2 MHz
NH ₃ 1 ₀₀ -0 ₀₁	572.5	to be obser	ved simu	lateously	with the 55

Table 2.5 – Targeted Observations with HIFI: Nitrogen Chemistrv

The need of high velocity resolution (Seyfert 2)

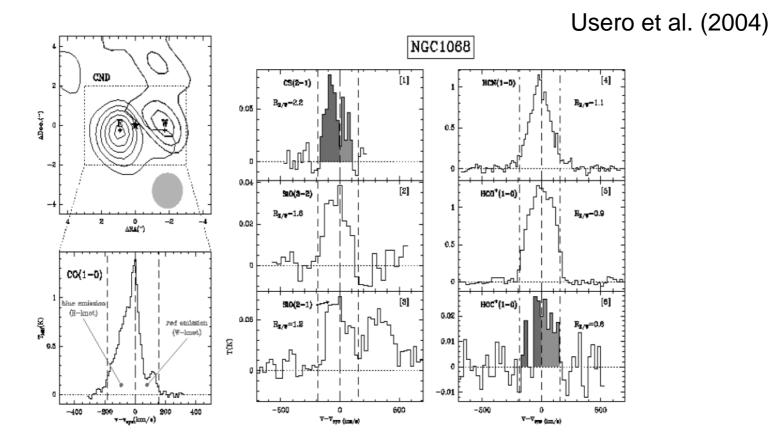
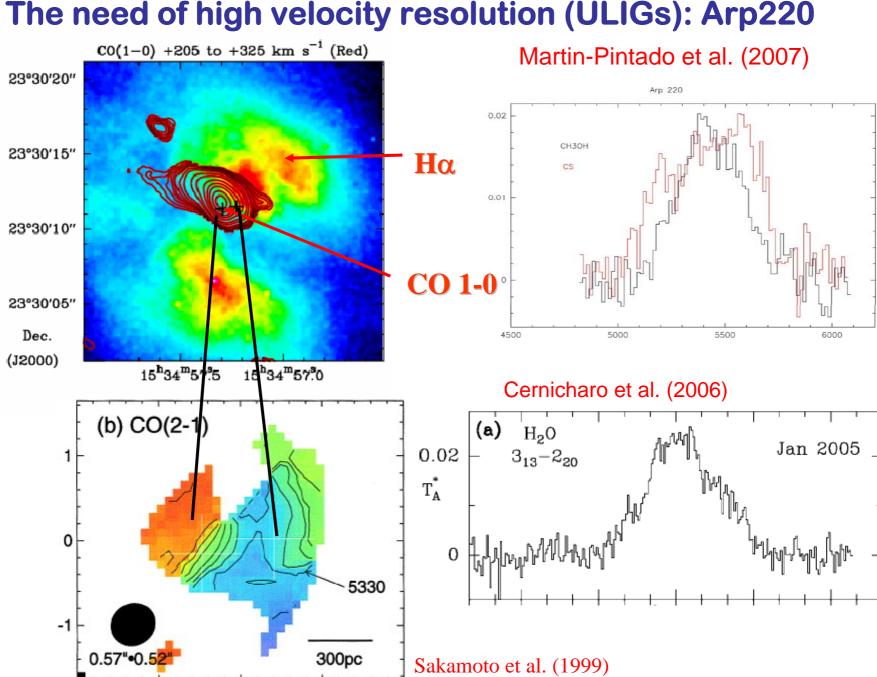



Fig.3.4: Integrated intensity maps of CO(1-0) toward the Circumnuclear Disk of NGC1068 obtained for the 'blue' and 'red' emission components as defined in the text (see also bottom panel). The figure has been adapted from Usero et al. (2004). The maps are derived from the data of Schinnerer et al. (2000). The starred marker highlights the AGN locus. 'bottom panel': Integrated spectrum of CO(1-0) emission in the CND. The W and E knots in the CO map correspond, respectively, to the 'red' and 'blue' components in the spectrum. Molecular lines in the Circumnuclear Disk of NGC1068. Two vertical point-dashed lines at v-v(sys)=-185 km/s and 155 km/s, delimit the 'blue' and 'red' kinematical components. For each line, the blue-to-red (east-to-west) average brightness temperature ratio: R(E/W) is indicated.

The need of high velocity resolution (ULIGs): Arp220

Starbursts, ULIGs and AGNs

study representative samples

- sample of starburst galaxies, luminous infrared galaxies, ULIGs and AGNs
- sample of interacting galaxies (incl. case study NGC4038/4039)
- NUGA sample of galaxies hosting AGNs

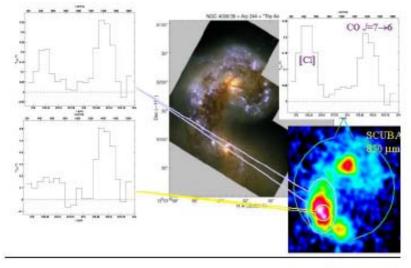
study representatively in detail: Cen-A

- study the physical properties of starbursts, ULIGs and interaction zones of galaxies
- determining the distribution, excitation, and dynamics of neutral and partially ionized atomic gas in the inner few kpc of galactic nuclei harbouring an AGN
- determining details on and study the physical properties of the gas phases to understand nuclear activity in galaxies.

Starbursts, ULIGs and AGNs

	-/							
¹² CO 6-5	0.689	DBSw	1	2 / 1 MHz	5	20	20	A
¹³ CO 6-5	0.659	DBSw	1	2 / 1 MHz	17	2	20	С
C ¹⁸ O 6-5	0.657	DBSw	1	2 / 1 MHz	19	2	50	С
¹² CO 10-9 NUGA	1.148	DBSw	5	2 / 1 MHz	9	10	20	С
¹³ CO 10-9	1.097	DBSw	5	2 / 1 MHz	156	2	50	С
HCN 6-5	0.530	DBSw	5	2 / 1 MHz	136	0.5	50	С
HCO ⁺ 6-5	0.533	DBSw	1	2 / 1 MHz	34	1	50	С
o-H2 ¹⁶ O 1 _{1,0} -1 _{0,1}	0.555	DBSw	1	2 / 1 MHz	22	2	20	C,D
p-H ₂ ¹⁶ O 2 _{0,2} -1 _{1,1}	0.985	DBSw	1	2 / 1 MHz	63	1	50	C,D
p-H ₂ ¹⁶ O 1 _{1,1} -0 _{0,0}	1.109	DBSw	1	2 / 1 MHz	71	1	50	C,D
[C I] NUGA	0.490	DBSw	1	2 / 1 MHz	19	2	20	B,D
[C I] NUGA	0.806	DBSw	5	2 / 1 MHz	64	2	50	A,D
[C II] NUGA	1.895	DBSw	9	2 / 1 MHz	5	15	20	C,D
[N II] NUGA	1.456	DBSw	1	2 / 1 MHz	28	5	50	C,D

SBs+ULIGs:


PACS

15 objects

NUGA 28 objects

Transition	λ [μ m]	Flux [W/m2]	# of points	S/N	Obs.time [minutes]
M82 (v=225 km/s)					
[O I]	63.2	1.1e-14	9	10	16
[O I]	145.5	5.4e-15	4	10	7
[O III]	88.4	3.6e-15	9	10	16
[N II]	121.9	1.1e-15	4	10	7

Interacting galaxies (incl. the Antennae)

Fig. 3.1. Montage of the Antennae (NGC4038/39) as seen by the HST (center), SCUBA at 850 micron (lower
right) and spectra of CO 7-6 and (CI) 809 GHz Integrated over selected areas (SPIFI/UCMT data by Isaak,
Papadopoulos & van der Werf, in preparation).

Transition	ν [THz]	Obs.Mode	Nyqu. Sampl.	Area [arcsec ²]
NGC 4038/3	9 (V=1	600 km/s)		
[CI]	0.49	OTF/Ch	1/2	150x150
	0.81	OTF/Ch	1/2	150x150
[CII]	1.90	OTF/Ch	1/2	150x150
[NII]	1.47	10x Ch		

Toomre type	Galaxie	[CII]	[NII]	[CII] bright	iness [NII]	[CII] T×	∆V [NII]	[CII] .	Tp[NII]
roonne type	Galaxie	10 ⁻¹⁵ W/m²		[10 ⁻⁴ ergs cm ⁻² s ⁻¹ sr ⁻¹]		[K km/s]		[K]	
separated	NGC4038/9			s	ee Sect. 3.2	1			
very close	NGC520	2.5	0.36	11	1.6	157	49	0.4	0.10
	Arp 299				see Sect. 3.	1			
	NGC3256	13.7	1.3	60 (ext)	5.6 (ext)	100	25	0.2	0.07
merging	NGC6240	2.6	0.27	11	1.2	160	36	0.3	0.07
	Arp220	see Sect. 4.2.1							
merg.remn.	NGC7252								

Cen A: the Giant Elliptical Radiogalaxy

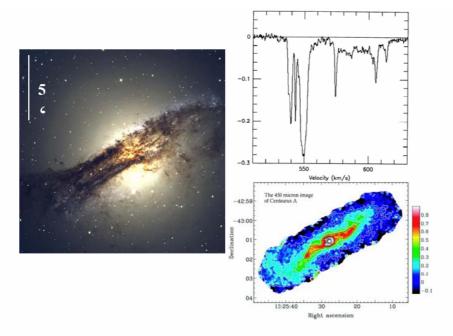
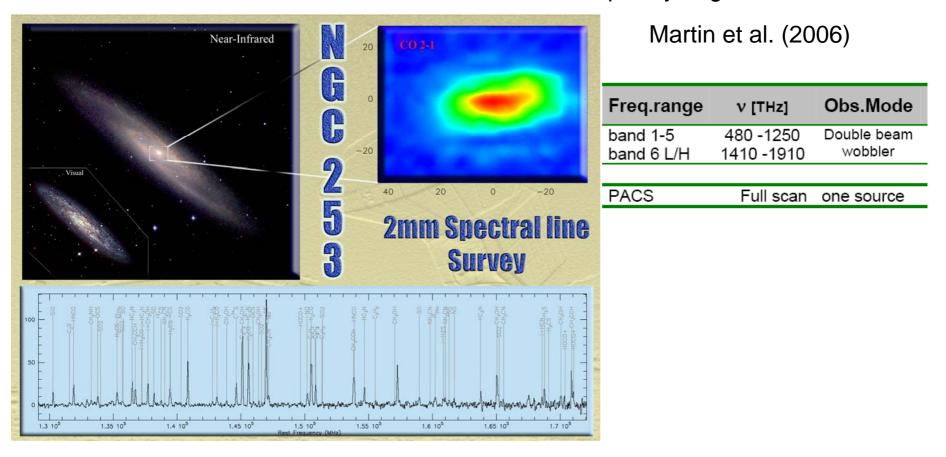


Fig.3.3: Optical image of Centaurus A, compared to the continuum emission at 450 μ m as derived from SCUBA observations (Leeuw et al. 2002). The HCO⁺ absorption spectrum reveals a series of narrow-line absorption features, including a forest of red-shifted components (from Israel 1998).


Cen-A (V=575 k	m/s) - Du	sty Disk		-				•
[CI]	0.49	OTF	1/2	5	2 / 1 MHz	0.5	4	240"x120"/10 km/s
	0.81		1/2	5		0.5	4	240"x120" /10 /39"
[CII]	1.90	OTF	1/2	5	4 / 1 MHz	3.1	30	240"x120"/10 km/s
[NII]	1.47	OTF	1/2	5	4 / 1 MHz	2.4	20	240"x120"/20 km/s
						6.5		
Cen-A (V=575 k	m/s) - Cir	cumnucle	ear Disk					
p-H ₂ ¹⁶ O 2 _{0,2} -1 _{1,1}	987.9	P Rast			4 / 1 MHz	1.5	2	3 positions, 10 km/s
p-H ₂ ¹⁶ O 1 _{1,1} -0 _{0,0}	1113.3	P Rast			4 / 1 MHz	1.8	2	3 positions, 10 km/s
p-H ₂ ¹⁸ O 1 _{1,1} -0 _{0,0}	1101.7	P Rast			4 / 1 MHz	2.5	1	3 positions, 20 km/s
CO (10-9)	1151.9	P Rast			4 / 1 MHz	1.0	2	3 positions, 20 km/s
						6.8		
Cen-A (V=575 k	m/s) – Ak	osorption	against I	Nuclear (Continuum Di	sk		
p-H ₂ ¹⁶ O 2 _{0.2} -1 _{1.1}	987.9	P.Sw.			4 / 1 MHz	0.5	2	10 km/s
p-H ₂ ¹⁶ O 1 _{1,1} -0 _{0,0}	1113.3	P.Sw.			4 / 1 MHz	0.6	2	10 km/s
p-H ₂ ¹⁸ O 1 _{1,1} -0 _{0,0}	1113.3	P.Sw.			4 / 1 MHz	0.6	2	10 km/s

Güsten, Philipp

Chemical Complexity in Extragalactic Nuclei

I. Line surveys towards extragalactic nuclei

Spectral line surveys with HIFI are fundamental to fully characterize the chemical complexity of galactic nuclei.

Chemical Complexity in Extragalactic Nuclei

II. Absorption towards luminous Xgal nuclei (incl. Arp220)

detailed chemical study of those lines that are not accessible from ground, mainly the water lines and lines in bands 6 & 7.

Gonzalez–Alonso et al. (2004)	Transition	ν [THz]	Obs.Mode
	Arp 220 (V=5426 k	m/s)	
1.1 Auguna hour and a warman and and and a second a	o-H ₂ ¹⁶ O 1 _{1,0} -1 _{0,1}	556.9	Ch
Sgr B2 (M)	p-H ₂ ¹⁶ O 2 _{0.2} -1 _{1.1}	987.9	Ch
1 week all planter walk a more of the solution of a second but hall the solution of a	p-H ₂ ¹⁶ O 1 _{1,1} -0 _{0,0}	1113.3	Ch
$\begin{array}{c} \mathbf{g} \\ \mathbf{f} \\ \mathbf{h} \\ $	o-H ₂ ¹⁶ O 2 _{1,2} -1 _{0,1}	1669.9	Ch
	o-H ₂ ¹⁸ O 1 ₁₀ -1 ₀₁	547.7	Ch
$ \begin{array}{c} 0.9 \\ $	p-H ₂ ¹⁸ O 1 _{1,1} -0 _{0,0}	1101.7	Ch
		Total	WATER
	[CII] ² P _{1/2} - ² P _{3/2}	1900.5	Ch
11 Em Anna man An and Mark and I	OH ² ∏1/2 3/2-1/2	1834.7	Ch
$ \begin{array}{c} \text{In } \\ \text{NH}_{3} \\ \text{NH}_{3} \\ \text{NH}_{3} \\ \text{CH } \\ \text{NH}_{3} \\ \text{NH}_{3} \\ \text{NH}_{3} \\ \text{NH}_{3} \\ \text{CH } \\ \text{NH}_{3} \\ \text{NH}_{$	$NH_3 3_2 - 2_2$	1811.6	Ch
E 1 Emmily my more and and and and all all the first and all the first a	$NH_{3}^{2} 3_{2}^{-} 2_{2}^{2}$	1765.0	Ch
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NH ₃ 3 ₁ -2 ₁	1763.6	Ch
	H ₂ O 3 ₀₃ -2 ₁₂	1716.8	Ch
0.8 H ₂ 0 H	CH J=2-1	1657.0	Ch
120 140 160 180	H ₂ ¹⁸ O 2 _{1,2} -1 _{0,1}	1655.9	Ch
$\lambda_{ m rest}$ (μ m)	CO J=14-13	1611.8	Ch
	[NII] ³ P ₁ - ³ P ₀	1461.1	Ch
		Total	BANDs 6

PACS Full Scan

Güsten Philipp

Chemical Complexity in Extragalactic Nuclei

III. The Physics of the ISM in low-metallicity environments

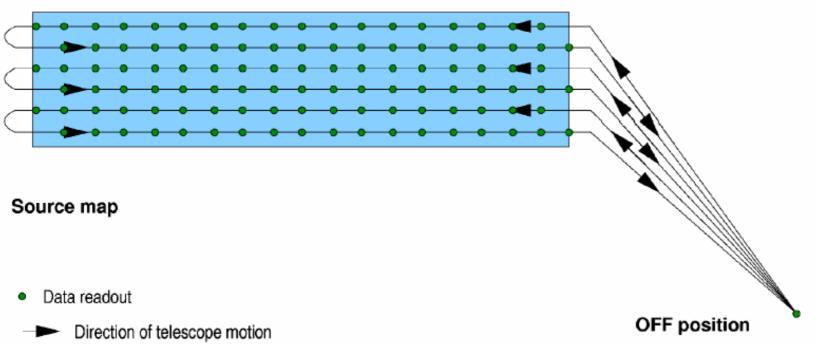
Study of physical processes and conditions in a limited sample of regions of low-metallicity ISM

Galaxie	Distance [Mpc]	z/z_{o}	L _{IR} (L _⊚)	Peak brightness [CII] [10 ⁻⁴ ergs cm ⁻² s ⁻¹ sr ⁻¹]	Area [arcmin]
LMC	0.05	0.35	5.5(8)	2.5(-4)	
SMC	0.06	0.10		0.6(-4)	
IC10	0.8	0.15	0.1 (9)	0.1(-4)	6x6
NGC1569	2	0.3	0.7 (9)	0.7(-4)	2x1
IC4662	2		0.1 (9)	0.1(-4)	1.3x1
BHB	3	1:			1x1
NGC5253	4	0.4	0.8 (9)		3x2
IZw18	11	0.03			1x1
Haro2	20	0.5	2.7 (9)		1x1

Line	V [THz]	Area [arcmin]	Grid [arcsec]	Positions No	∆v [kms ⁻¹]	rms [mK]
LMC - N1	1 (clouds	no. 27, 28	3 & 27)			
[CI]	0.49	1x1	50	2	2	6
	0.81	1x1	30	4	2	6
[CII]	1.90	1x1	10	36	2	90
N + O		1x1	9			

Summary of observing time requests

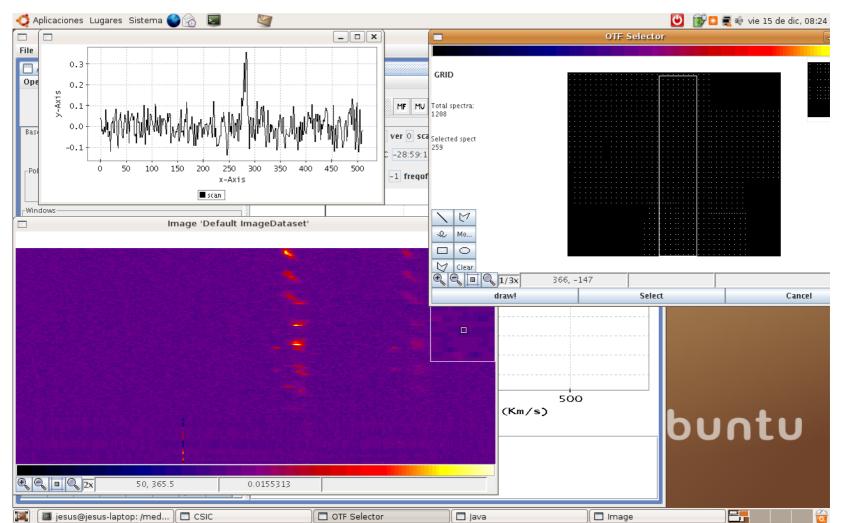
Project	Total	HIFI	PACS
Physical Conditions of the ISM in the Galactic Center Excitation Studies of Starbursts, ULIGs & AGN	106	89	17
Excitation of starbursts, ultraluminous and AGN	100	83	17
Interacting galaxies, incl. case study of Antennae	44	37	7
NUGA sample of AGN	25	25	-
Special Case Study: Cen A	17	15	2
Chemical Complexity in Extragalactic Nuclei			
Line surveys towards extragalactic nuclei	46	36	10
Absorption towards luminous extragalactic nuclei	<mark>45</mark>	<mark>35</mark>	<mark>10</mark>
Physics of the ISM in Low-metallicity Environments	<mark>45</mark> 53	37	16
Total time requested [h]	432	353	79



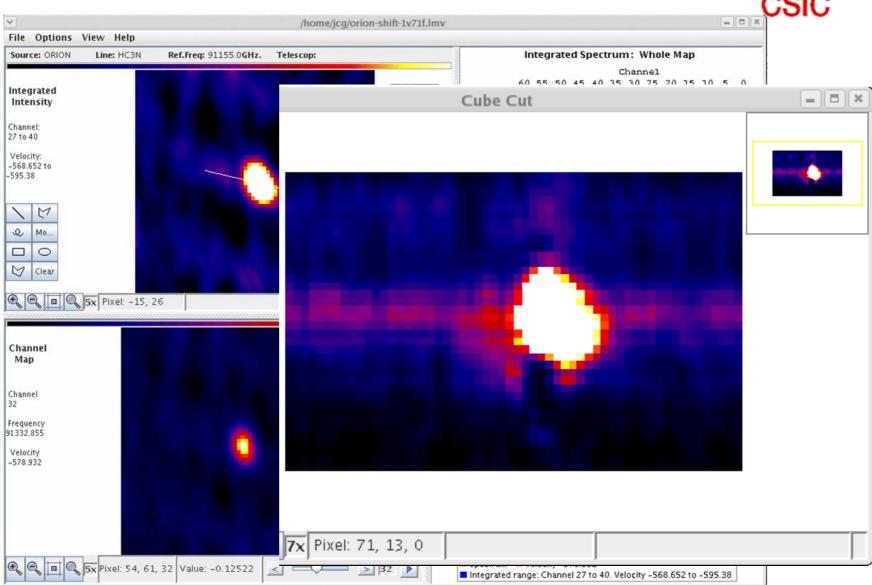
DAMIR-IEM Contribution OTF Map Processing Eduardo Sanchez David Hurtado Laura Diez Merino

OTF image reconstruction (MASSA)

• Interactive package based on HCSS (Java and Jython)


le Edit Help	
/home/jesus/tem/disco_e/sio_sgra/mapa-total-sio2	21-norepetidos.30m1 ه د ت
Operation Edit View	
$\cancel{F} \Sigma \mathcal{F} \mathcal{K} \mathcal{F}_{\mathcal{E}} \mathcal{F}_{\mathcal{F}}$	F7 💥 🙀 VI II MF MU ME ML MT MB MU MP MO MI ME
Baseline	num 1188 ver 8 scan 2448 source 5GRA* line 51002
🖲 Polynomial 🔾 Sinus 🔲 continuum	RA 17:42:29.303 DEC -28:59:18.997 epoch 1950.0 RA_off 333 DEC_off 3
Polynomial Fit	
	rfreq 86,846.89 fresol 1.25 freqoff 0 voff 0.01 vresol -4.31 image 89,842.89
order: 0	1188
Mindows	0.25
vindow 1	0.25
vindow 2	0.20
vindow 3	0.15
vindow 4	
vindow 5	
vindow 6 vindow 7	🚈 0.05+++ I
vindow 8	I TEMEL TEMEL TEMELTE AND AN ANTI ANTIMUM AT A MALITY A TAUT AND AT THE AT A TAUT AND A TAUT AT A TAUT AND A TAUT AT
syindow 9	
Clear all User Values	
Fit Clear fit Apply Print Area	-0.10
	-0.15
num ver source line teles off1 off2 scan	-500 0 500
1 8 SGR., SIOO., IRA., 140., -16., 2438 📥	-500 0 500 velocity (Km/s)
24 -10 SGR SIOO IRA 14012 2438	
188 8 5GR 5I00 IRA 14080 2448 191 8 5GR 5I00 IRA 14039 2448	- 1324.9 0.304
230 8 SGR SIOOIRA 140392448	8
233 8 SGR SIOO IRA 140 40 2448	
82 11 SGR., SIOO., IRA., 160., 40., 2283	
08 9 SGR SIOO IRA 160 80 2283 10 9 SGR SIOO IRA 160 120 2283	

(MASSA-OTF)



Interactive package based on HCSS (Java and Jython)

MADCUBA

